![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer programming > Algorithms & procedures
This book explores how predictive policing transforms police work. Police departments around the world have started to use data-driven applications to produce crime forecasts and intervene into the future through targeted prevention measures. Based on three years of field research in Germany and Switzerland, this book provides a theoretically sophisticated and empirically detailed account of how the police produce and act upon criminal futures as part of their everyday work practices. The authors argue that predictive policing must not be analyzed as an isolated technological artifact, but as part of a larger sociotechnical system that is embedded in organizational structures and occupational cultures. The book highlights how, for crime prediction software to come to matter and play a role in more efficient and targeted police work, several translation processes are needed to align human and nonhuman actors across different divisions of police work. Police work is a key function for the production and maintenance of public order, but it can also discriminate, exclude, and violate civil liberties and human rights. When criminal futures come into being in the form of algorithmically produced risk estimates, this can have wide-ranging consequences. Building on empirical findings, the book presents a number of practical recommendations for the prudent use of algorithmic analysis tools in police work that will speak to the protection of civil liberties and human rights as much as they will speak to the professional needs of police organizations. An accessible and compelling read, this book will appeal to students and scholars of criminology, sociology, and cultural studies as well as to police practitioners and civil liberties advocates, in addition to all those who are interested in how to implement reasonable forms of data-driven policing.
This English version of Ruslan L. Stratonovich's Theory of Information (1975) builds on theory and provides methods, techniques, and concepts toward utilizing critical applications. Unifying theories of information, optimization, and statistical physics, the value of information theory has gained recognition in data science, machine learning, and artificial intelligence. With the emergence of a data-driven economy, progress in machine learning, artificial intelligence algorithms, and increased computational resources, the need for comprehending information is essential. This book is even more relevant today than when it was first published in 1975. It extends the classic work of R.L. Stratonovich, one of the original developers of the symmetrized version of stochastic calculus and filtering theory, to name just two topics. Each chapter begins with basic, fundamental ideas, supported by clear examples; the material then advances to great detail and depth. The reader is not required to be familiar with the more difficult and specific material. Rather, the treasure trove of examples of stochastic processes and problems makes this book accessible to a wide readership of researchers, postgraduates, and undergraduate students in mathematics, engineering, physics and computer science who are specializing in information theory, data analysis, or machine learning.
This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.
This book gathers selected papers presented at the International Conference on Advancements in Computing and Management (ICACM 2019). Discussing current research in the field of artificial intelligence and machine learning, cloud computing, recent trends in security, natural language processing and machine translation, parallel and distributed algorithms, as well as pattern recognition and analysis, it is a valuable resource for academics, practitioners in industry and decision-makers.
This book presents the best-selected papers presented at the International Conference on Data Science, Computation and Security (IDSCS-2021), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during April 16-17, 2021. The proceeding is targeting the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing, and cloud computing.
This book constitutes refereed proceedings of the 20th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2021, held in Irkutsk, Russia, in July 2021. Due to the COVID-19 pandemic the conference was held online. The 31 full papers and 3 short papers presented in this volume were carefully reviewed and selected from a total of 102 submissions. The papers in the volume are organised according to the following topical headings: continuous optimization; integer programming and combinatorial optimization; operational research applications; optimal control.
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems contains computer-code examples for the development of genetic algorithm systems - compiling them from an array of practitioners in the field. Each contribution of this singular resource includes: unique code segments documentation description of the operations performed rationale for the chosen approach problems the code overcomes or addresses Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems complements the first two volumes in the series by offering examples of computer code. The first two volumes dealt with new research and an overview of the types of applications that could be taken with GAs. This volume differs from its predecessors by specifically concentrating on specific functions in genetic algorithms, serving as the only compilation of useful and usable computer code in the field.
This book constitutes the refereed proceedings of the 27th International Symposium on Model Checking Software, SPIN 2021, held virtually in July 2021.The 3 full papers, 4 tool papers, and 1 case study presented together with 2 invited talks were carefully reviewed and selected from 20 submissions. Topics covered include formal verification techniques for automated analysis of software; formal analysis for modeling languages, such as UML/state charts; formal specification languages, temporal logic, design-by-contract; model checking, automated theorem proving, including SAT and SMT; verifying compilers; abstraction and symbolic execution techniques; and much more.
This book constitutes selected papers from the Second International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS 2021, held in Vellore, India, in February 2021. The 32 full papers and 6 short papers presented were thoroughly reviewed and selected from 103 submissions. They are organized in the topical sections on digital design for signal, image and video processing; VLSI testing and verification; emerging technologies and IoT; nano-scale modelling and process technology device; analog and mixed signal design; communication technologies and circuits; technology and modelling for micro electronic devices; electronics for green technology.
This volume LNCS 12925 constitutes the papers of the 23rd International Conference on Big Data Analytics and Knowledge Discovery, held in September 2021. Due to COVID-19 pandemic it was held virtually. The 12 full papers presented together with 15 short papers in this volume were carefully reviewed and selected from a total of 71 submissions. The papers reflect a wide range of topics in the field of data integration, data warehousing, data analytics, and recently big data analytics, in a broad sense. The main objectives of this event are to explore, disseminate, and exchange knowledge in these fields.
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
This book constitutes the refereed proceedings of the 12th International Conference on the Theory and Application of Diagrams, Diagrams 2021, held virtually in September 2021. The 16 full papers and 25 short papers presented together with 16 posters were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: design of concrete diagrams; theory of diagrams; diagrams and mathematics; diagrams and logic; new representation systems; analysis of diagrams; diagrams and computation; cognitive analysis; diagrams as structural tools; formal diagrams; and understanding thought processes. 10 chapters are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
RDF-based knowledge graphs require additional formalisms to be fully context-aware, which is presented in this book. This book also provides a collection of provenance techniques and state-of-the-art metadata-enhanced, provenance-aware, knowledge graph-based representations across multiple application domains, in order to demonstrate how to combine graph-based data models and provenance representations. This is important to make statements authoritative, verifiable, and reproducible, such as in biomedical, pharmaceutical, and cybersecurity applications, where the data source and generator can be just as important as the data itself. Capturing provenance is critical to ensure sound experimental results and rigorously designed research studies for patient and drug safety, pathology reports, and medical evidence generation. Similarly, provenance is needed for cyberthreat intelligence dashboards and attack maps that aggregate and/or fuse heterogeneous data from disparate data sources to differentiate between unimportant online events and dangerous cyberattacks, which is demonstrated in this book. Without provenance, data reliability and trustworthiness might be limited, causing data reuse, trust, reproducibility and accountability issues. This book primarily targets researchers who utilize knowledge graphs in their methods and approaches (this includes researchers from a variety of domains, such as cybersecurity, eHealth, data science, Semantic Web, etc.). This book collects core facts for the state of the art in provenance approaches and techniques, complemented by a critical review of existing approaches. New research directions are also provided that combine data science and knowledge graphs, for an increasingly important research topic.
This book presents best selected papers presented at the International Conference on Data Science for Computational Security (IDSCS 2020), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during 13-14 March 2020. The proceeding will be targeting the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing and cloud computing.
Introducing a NEW addition to our growing library of computer science titles, Algorithm Design and Applications, by Michael T. Goodrich & Roberto Tamassia! Algorithms is a course required for all computer science majors, with a strong focus on theoretical topics. Students enter the course after gaining hands-on experience with computers, and are expected to learn how algorithms can be applied to a variety of contexts. This new book integrates application with theory. Goodrich & Tamassia believe that the best way to teach algorithmic topics is to present them in a context that is motivated from applications to uses in society, computer games, computing industry, science, engineering, and the internet. The text teaches students about designing and using algorithms, illustrating connections between topics being taught and their potential applications, increasing engagement.
This book features selected research papers presented at the International Conference on Evolutionary Computing and Mobile Sustainable Networks (ICECMSN 2020), held at the Sir M. Visvesvaraya Institute of Technology on 20-21 February 2020. Discussing advances in evolutionary computing technologies, including swarm intelligence algorithms and other evolutionary algorithm paradigms which are emerging as widely accepted descriptors for mobile sustainable networks virtualization, optimization and automation, this book is a valuable resource for researchers in the field of evolutionary computing and mobile sustainable networks.
This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7-10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional.
This is a comprehensive study of various time-dependent scheduling problems in single-, parallel- and dedicated-machine environments. In addition to complexity issues and exact or heuristic algorithms which are typically presented in scheduling books, the author also includes more advanced topics such as matrix methods in time-dependent scheduling, time-dependent scheduling with two criteria and time-dependent two-agent scheduling. The reader should be familiar with the basic notions of calculus, discrete mathematics and combinatorial optimization theory, while the book offers introductory material on theory of algorithms, NP-complete problems, and the basics of scheduling theory. The author includes numerous examples, figures and tables, he presents different classes of algorithms using pseudocode, he completes all chapters with extensive bibliographies, and he closes the book with comprehensive symbol and subject indexes. The previous edition of the book focused on computational complexity of time-dependent scheduling problems. In this edition, the author concentrates on models of time-dependent job processing times and algorithms for solving time-dependent scheduling problems. The book is suitable for researchers working on scheduling, problem complexity, optimization, heuristics and local search algorithms.
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
Teaching quantum computation and information is notoriously difficult, because it requires covering subjects from various fields of science, organizing these subjects consistently in a unified way despite their tendency to favor their specific languages, and overcoming the subjects' abstract and theoretical natures, which offer few examples of actual realizations. In this book, we have organized all the subjects required to understand the principles of quantum computation and information processing in a manner suited to physics, mathematics, and engineering courses as early as undergraduate studies.In addition, we provide a supporting package of quantum simulation software from Wolfram Mathematica, specialists in symbolic calculation software. Throughout the book's main text, demonstrations are provided that use the software package, allowing the students to deepen their understanding of each subject through self-practice. Readers can change the code so as to experiment with their own ideas and contemplate possible applications. The information in this book reflects many years of experience teaching quantum computation and information. The quantum simulation-based demonstrations and the unified organization of the subjects are both time-tested and have received very positive responses from the students who have experienced them.
This book focuses on the implementation, evaluation and application of DNA/RNA-based genetic algorithms in connection with neural network modeling, fuzzy control, the Q-learning algorithm and CNN deep learning classifier. It presents several DNA/RNA-based genetic algorithms and their modifications, which are tested using benchmarks, as well as detailed information on the implementation steps and program code. In addition to single-objective optimization, here genetic algorithms are also used to solve multi-objective optimization for neural network modeling, fuzzy control, model predictive control and PID control. In closing, new topics such as Q-learning and CNN are introduced. The book offers a valuable reference guide for researchers and designers in system modeling and control, and for senior undergraduate and graduate students at colleges and universities.
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers and case studies related to all the areas of data mining, machine learning, Internet of things (IoT) and information security.
In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
This book highlights essential concepts in connection with the traditional bat algorithm and its recent variants, as well as its application to find optimal solutions for a variety of real-world engineering and medical problems. Today, swarm intelligence-based meta-heuristic algorithms are extensively being used to address a wide range of real-world optimization problems due to their adaptability and robustness. Developed in 2009, the bat algorithm (BA) is one of the most successful swarm intelligence procedures, and has been used to tackle optimization tasks for more than a decade. The BA's mathematical model is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, it has attracted the attention of researchers who are working to find optimal solutions in a diverse range of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization and linear/nonlinear optimization problems. Along with the traditional BA, its enhanced versions are now also being used to solve optimization problems in science, engineering and medical applications around the globe.
This book describes the development and design of a unique combined data and power management infrastructure for small satellites. This new edition became necessary because in the frame of the system's impressive evolution from an academic prototype to one of today's most advanced core avionics, many elements were upgraded to their next technology generation and diverse new components complement the upgraded design. All elements are presented in updated respectively new chapters. This modular infrastructure was selected by the Swiss start-up ClearSpace SA for ESA's first mission ClearSpace-1 to remove space debris. Furthermore it is the baseline for the Thai national satellite development program and is used by an increasing number of universities worldwide for research studies. |
![]() ![]() You may like...
Torment Saint - The Life of Elliott…
William Todd Schultz
Paperback
![]()
Power and Piety - Monastic Houses of…
Gunter Endres, Graham Hobster
Hardcover
R1,061
Discovery Miles 10 610
Now Media - The Evolution of Electronic…
Norman J. Medoff, Barbara K. Kaye
Hardcover
R4,333
Discovery Miles 43 330
The Life of Jesus Christ - Part One…
Ludolph of Saxony
Hardcover
The Big Midweek - Life Inside The Fall
Steve Hanley, Olivia Piekarski
Hardcover
R528
Discovery Miles 5 280
|