0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Algorithmic Learning in a Random World (Hardcover, 2nd ed. 2022) Loot Price: R5,052
Discovery Miles 50 520
Algorithmic Learning in a Random World (Hardcover, 2nd ed. 2022): Vladimir Vovk, Alexander Gammerman, Glenn Shafer

Algorithmic Learning in a Random World (Hardcover, 2nd ed. 2022)

Vladimir Vovk, Alexander Gammerman, Glenn Shafer

 (sign in to rate)
Loot Price R5,052 Discovery Miles 50 520 | Repayment Terms: R473 pm x 12*

Bookmark and Share

Expected to ship within 12 - 17 working days

This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described - conformal predictors - are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties. Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of "randomness" (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions. Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.

General

Imprint: Springer International Publishing AG
Country of origin: Switzerland
Release date: December 2022
First published: 2022
Authors: Vladimir Vovk • Alexander Gammerman • Glenn Shafer
Dimensions: 235 x 155mm (L x W)
Format: Hardcover
Pages: 476
Edition: 2nd ed. 2022
ISBN-13: 978-3-03-106648-1
Categories: Books > Computing & IT > General theory of computing > Mathematical theory of computation
Books > Computing & IT > General theory of computing > Data structures
Books > Computing & IT > Computer programming > Algorithms & procedures
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematics for scientists & engineers
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Promotions
LSN: 3-03-106648-0
Barcode: 9783031066481

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Deep Learning Applications: In Computer…
Qi Xuan, Yun Xiang, … Hardcover R2,985 Discovery Miles 29 850
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,926 Discovery Miles 29 260
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,578 Discovery Miles 75 780
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R9,088 Discovery Miles 90 880
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R891 R764 Discovery Miles 7 640
Get Started Programming with Python…
Manuel Mcfeely Hardcover R864 R743 Discovery Miles 7 430
Research Anthology on Machine Learning…
Information R Management Association Hardcover R18,375 Discovery Miles 183 750
Tree-Based Machine Learning Methods in…
Sharad Saxena Hardcover R2,211 Discovery Miles 22 110
Machine Learning In Bioinformatics Of…
Lukasz Kurgan Hardcover R3,765 Discovery Miles 37 650
Event Mining for Explanatory Modeling
Laleh Jalali, Ramesh Jain Hardcover R1,476 Discovery Miles 14 760
Data Mining - Concepts and Applictions
Ciza Thomas Hardcover R3,523 Discovery Miles 35 230
Machine Learning and Deep Learning in…
Mehul Mahrishi, Kamal Kant Hiran, … Hardcover R7,692 Discovery Miles 76 920

See more

Partners