![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
It is crucial that forensic science meets challenges such as identifying hidden patterns in data, validating results for accuracy, and understanding varying criminal activities in order to be authoritative so as to hold up justice and public safety. Artificial intelligence, with its potential subsets of machine learning and deep learning, has the potential to transform the domain of forensic science by handling diverse data, recognizing patterns, and analyzing, interpreting, and presenting results. Machine Learning and deep learning frameworks, with developed mathematical and computational tools, facilitate the investigators to provide reliable results. Further study on the potential uses of these technologies is required to better understand their benefits. Aiding Forensic Investigation Through Deep Learning and Machine Learning Frameworks provides an outline of deep learning and machine learning frameworks and methods for use in forensic science to produce accurate and reliable results to aid investigation processes. The book also considers the challenges, developments, advancements, and emerging approaches of deep learning and machine learning. Covering key topics such as biometrics, augmented reality, and fraud investigation, this reference work is crucial for forensic scientists, law enforcement, computer scientists, researchers, scholars, academicians, practitioners, instructors, and students.
Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions. In this book an international panel of experts introduce signal processing and machine learning techniques for BMI/BCI and outline their practical and future applications in neuroscience, medicine, and rehabilitation, with a focus on EEG-based BMI/BCI methods and technologies. Topics covered include discriminative learning of connectivity pattern of EEG; feature extraction from EEG recordings; EEG signal processing; transfer learning algorithms in BCI; convolutional neural networks for event-related potential detection; spatial filtering techniques for improving individual template-based SSVEP detection; feature extraction and classification algorithms for image RSVP based BCI; decoding music perception and imagination using deep learning techniques; neurofeedback games using EEG-based Brain-Computer Interface Technology; affective computing system and more.
Uncertainty in Data Envelopment Analysis: Fuzzy and Belief Degree-Based Uncertainties introduces methods to investigate uncertain data in DEA models, providing a deeper look into two types of uncertain DEA methods: Fuzzy DEA and Belief Degree Based Uncertainty DEA, which are based on uncertain measures. These models aim to solve problems encountered by classical data analysis in cases where inputs and outputs of systems and processes are volatile and complex, making measurement difficult. Classical data envelopment analysis (DEA) models use crisp data in order to measure inputs and outputs of a given system. Crisp input and output data are fundamentally indispensable in the conventional DEA models. If these models contain complex-uncertain data, then they will become more important and practical for decision-makers.
There is a significant deficiency among contemporary medicine practices reflected by experts making medical decisions for a large proportion of the population for which no or minimal data exists. Fortunately, our capacity to procure and apply such information is rapidly rising. As medicine becomes more individualized, the implementation of health IT and data interoperability become essential components to delivering quality healthcare. Quality Assurance in the Era of Individualized Medicine is a collection of innovative research on the methods and utilization of digital readouts to fashion an individualized therapy instead of a mass-population-directed strategy. While highlighting topics including assistive technologies, patient management, and clinical practices, this book is ideally designed for health professionals, doctors, nurses, hospital management, medical administrators, IT specialists, data scientists, researchers, academicians, and students.
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Artificial Intelligence in the Age of Neural Networks and Brain Computing demonstrates that existing disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity and smart autonomous search engines. The book covers the major basic ideas of brain-like computing behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as future alternatives. The success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel and Amazon can be interpreted using this book.
During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
This comprehensive compendium designs deep neural network models and systems for intelligent analysis of fundus imaging. In response to several blinding fundus diseases such as Retinopathy of Prematurity (ROP), Diabetic Retinopathy (DR) and Macular Edema (ME), different image acquisition devices and fundus image analysis tasks are elaborated.From the actual fundus disease analysis tasks, various deep neural network models and experimental results are constructed and analyzed. For each task, an actual system for clinical application is developed.This useful reference text provides theoretical and experimental reference basis for AI researchers, system engineers of intelligent medicine and ophthalmologists.
Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis.
Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications covers timely topics, including the neural network (NN), particle swarm optimization (PSO), evolutionary algorithm (GA), fuzzy sets (FS) and rough sets (RS), etc. Furthermore, the book highlights recent research on representative techniques to elaborate how a data-centric system formed a powerful platform for the processing of cloud hosted multimedia big data and how it could be analyzed, processed and characterized by CI. The book also provides a view on how techniques in CI can offer solutions in modeling, relationship pattern recognition, clustering and other problems in bioengineering. It is written for domain experts and developers who want to understand and explore the application of computational intelligence aspects (opportunities and challenges) for design and development of a data-centric system in the context of multimedia cloud, big data era and its related applications, such as smarter healthcare, homeland security, traffic control trading analysis and telecom, etc. Researchers and PhD students exploring the significance of data centric systems in the next paradigm of computing will find this book extremely useful.
Internet of things (IoT) is an emerging research field that is rapidly becoming an important part of our everyday lives including home automation, smart buildings, smart things, and more. This is due to cheap, efficient, and wirelessly-enabled circuit boards that are enabling the functions of remote sensing/actuating, decentralization, autonomy, and other essential functions. Moreover, with the advancements in embedded artificial intelligence, these devices are becoming more self-aware and autonomous, hence making decisions themselves. Current research is devoted to the understanding of how decision support systems are integrated into industrial IoT. Decision Support Systems and Industrial IoT in Smart Grid, Factories, and Cities presents the internet of things and its place during the technological revolution, which is taking place now to bring us a better, sustainable, automated, and safer world. This book also covers the challenges being faced such as relations and implications of IoT with existing communication and networking technologies; applications like practical use-case scenarios from the real world including smart cities, buildings, and grids; and topics such as cyber security, user privacy, data ownership, and information handling related to IoT networks. Additionally, this book focuses on the future applications, trends, and potential benefits of this new discipline. This book is essential for electrical engineers, computer engineers, researchers in IoT, security, and smart cities, along with practitioners, researchers, academicians, and students interested in all aspects of industrial IoT and its applications.
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing.
Recent advances in socio-cognitive and affective computing require further study as countless benefits and opportunities have emerged from these innovative technologies that may be useful in a number of contexts throughout daily life. In order to ensure these technologies are appropriately utilized across sectors, the challenges and strategies for adoption as well as potential uses must be thoroughly considered. Principles and Applications of Socio-Cognitive and Affective Computing discusses several aspects of affective interactions and concepts in affective computing, the fundamentals of emotions, and emerging research and exciting techniques for bridging the emotional disparity between humans and machines, all within the context of interactions. The book also considers problem and solution guidelines emerging in cognitive computing, thus summarizing the roadmap of current machine computational intelligence techniques for affective computing. Covering a range of topics such as social interaction, robotics, and virtual reality, this reference work is crucial for scientists, engineers, industry professionals, academicians, researchers, scholars, practitioners, instructors, and students.
In today's modernized world, the field of healthcare has seen significant practical innovations with the implementation of computational intelligence approaches and soft computing methods. These two concepts present various solutions to complex scientific problems and imperfect data issues. This has made both very popular in the medical profession. There are still various areas to be studied and improved by these two schemes as healthcare practices continue to develop. Computational Intelligence and Soft Computing Applications in Healthcare Management Science is an essential reference source that discusses the implementation of soft computing techniques and computational methods in the various components of healthcare, telemedicine, and public health. Featuring research on topics such as analytical modeling, neural networks, and fuzzy logic, this book is ideally designed for software engineers, information scientists, medical professionals, researchers, developers, educators, academicians, and students.
Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative.
This comprehensive book systematically introduces Dynamic Data Driven Simulation (DDDS) as a new simulation paradigm that makes real-time data and simulation model work together to enable simulation-based prediction/analysis.The text is significantly dedicated to introducing data assimilation as an enabling technique for DDDS. While data assimilation has been studied in other science fields (e.g., meteorology, oceanography), it is a new topic for the modeling and simulation community.This unique reference text bridges the two study areas of data assimilation and modelling and simulation, which have been developed largely independently from each other.
As technology continues to advance in today's global market, practitioners are targeting systems with significant levels of applicability and variance. Instrumentation is a multidisciplinary subject that provides a wide range of usage in several professional fields, specifically engineering. Instrumentation plays a key role in numerous daily processes and has seen substantial advancement in recent years. It is of utmost importance for engineering professionals to understand the modern developments of instruments and how they affect everyday life. Advancements in Instrumentation and Control in Applied System Applications is a collection of innovative research on the methods and implementations of instrumentation in real-world practices including communication, transportation, and biomedical systems. While highlighting topics including smart sensor design, medical image processing, and atrial fibrillation, this book is ideally designed for researchers, software engineers, technologists, developers, scientists, designers, IT professionals, academicians, and post-graduate students seeking current research on recent developments within instrumentation systems and their applicability in daily life.
There is no doubt that there has been much excitement regarding the pioneering contributions of artificial intelligence (AI), the internet of things (IoT), and blockchain technologies and tools in visualizing and realizing smarter as well as sophisticated systems and services. However, researchers are being bombarded with various machine and deep learning algorithms, which are categorized as a part and parcel of the enigmatic AI discipline. The knowledge discovered gets disseminated to actuators and other concerned systems in order to empower them to intelligently plan and insightfully execute appropriate tasks with clarity and confidence. The IoT processes in conjunction with the AI algorithms and blockchain technology are bound to lay out a stimulating foundation for producing and sustaining smarter systems for society. The Handbook of Research on Smarter and Secure Industrial Applications Using AI, IoT, and Blockchain Technology articulates and accentuates various AI algorithms, fresh innovations in the IoT, and blockchain spaces. The domain of transforming raw data to information and to relevant knowledge is gaining prominence with the availability of data ingestion, processing, mining, analytics algorithms, platforms, frameworks, and other accelerators. Covering topics such as blockchain applications, Industry 4.0, and cryptography, this book serves as a comprehensive guide for AI researchers, faculty members, IT professionals, academicians, students, researchers, and industry professionals.
|
You may like...
Discovering Computers, Essentials…
Susan Sebok, Jennifer Campbell, …
Paperback
Data Fusion in Wireless Sensor Networks…
Domenico Ciuonzo, Pierluigi Salvo Rossi
Hardcover
|