![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
Cyber security is a key focus in the modern world as more private information is stored and saved online. In order to ensure vital information is protected from various cyber threats, it is essential to develop a thorough understanding of technologies that can address cyber security challenges. Artificial intelligence has been recognized as an important technology that can be employed successfully in the cyber security sector. Due to this, further study on the potential uses of artificial intelligence is required. The Handbook of Research on Cyber Security Intelligence and Analytics discusses critical artificial intelligence technologies that are utilized in cyber security and considers various cyber security issues and their optimal solutions supported by artificial intelligence. Covering a range of topics such as malware, smart grid, data breachers, and machine learning, this major reference work is ideal for security analysts, cyber security specialists, data analysts, security professionals, computer scientists, government officials, researchers, scholars, academicians, practitioners, instructors, and students.
Artificial Neural Networks for Renewable Energy Systems and Real-World Applications presents current trends for the solution of complex engineering problems in the application, modeling, analysis, and optimization of different energy systems and manufacturing processes. With growing research catering to the applications of neural networks in specific industrial applications, this reference provides a single resource catering to a broader perspective of ANN in renewable energy systems and manufacturing processes. ANN-based methods have attracted the attention of scientists and researchers in different engineering and industrial disciplines, making this book a useful reference for all researchers and engineers interested in artificial networks, renewable energy systems, and manufacturing process analysis.
Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation.
Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and veri?cation. Sections cover adversarial attack, veri?cation and defense, mainly focusing on image classi?cation applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems.
IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety Enables readers to understand a broad area of state-of-the-art research in physical IoT-enabled security IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety describes new techniques in unobtrusive surveillance that enable people to act and communicate freely, while at the same time protecting them from malevolent behavior. It begins by characterizing the latest on surveillance systems deployed at smart campuses, miniatures of smart cities with more demanding frameworks that enable learning, social interaction, and creativity, and by performing a comparative assessment in the area of unobtrusive surveillance systems for smart campuses. A proposed taxonomy for IoT-enabled smart campus unfolds in five research dimensions: (1) physical infrastructure; (2) enabling technologies; (3) software analytics; (4) system security; and (5) research methodology. By applying this taxonomy and by adopting a weighted scoring model on the surveyed systems, the book presents the state of the art and then makes a comparative assessment to classify the systems. Finally, the book extracts valuable conclusions and inferences from this classification, providing insights and directions towards required services offered by unobtrusive surveillance systems for smart campuses. IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety includes specific discussion of: Smart campus's prior work taxonomies and classifications, a proposed taxonomy, and an adopted weight scoring model Personal consumer benefits and potential social dilemmas encountered when adopting an unobtrusive surveillance system Systems that focus on smart buildings, public spaces, smart lighting and smart traffic lights, smart labs, and smart campus ambient intelligence A case study of a spatiotemporal authentication unobtrusive surveillance system for smart campus safety and emerging issues for further research directions IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety is an essential resource for computer science and engineering academics, professionals, and every individual who is working and doing research in the area of unobtrusive surveillance systems and physical security to face malevolent behavior in smart campuses.
Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented -the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing.
Artificial Intelligence, Machine Learning, and Mental Health in Pandemics: A Computational Approach provides a comprehensive guide for public health authorities, researchers and health professionals in psychological health. The book takes a unique approach by exploring how Artificial Intelligence (AI) and Machine Learning (ML) based solutions can assist with monitoring, detection and intervention for mental health at an early stage. Chapters include computational approaches, computational models, machine learning based anxiety and depression detection and artificial intelligence detection of mental health. With the increase in number of natural disasters and the ongoing pandemic, people are experiencing uncertainty, leading to fear, anxiety and depression, hence this is a timely resource on the latest updates in the field.
Artificial Intelligence for Healthcare Applications and Management introduces application domains of various AI algorithms across healthcare management. Instead of discussing AI first and then exploring its applications in healthcare afterward, the authors attack the problems in context directly, in order to accelerate the path of an interested reader toward building industrial-strength healthcare applications. Readers will be introduced to a wide spectrum of AI applications supporting all stages of patient flow in a healthcare facility. The authors explain how AI supports patients throughout a healthcare facility, including diagnosis and treatment recommendations needed to get patients from the point of admission to the point of discharge while maintaining quality, patient safety, and patient/provider satisfaction. AI methods are expected to decrease the burden on physicians, improve the quality of patient care, and decrease overall treatment costs. Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. This book focuses on predictive analytics, health text processing, data aggregation, management of patients, and other fields which have all turned out to be bottlenecks for the efficient management of coronavirus patients.
Cognitive Models for Sustainable Environment reviews the fundamental concepts of gathering, processing and analyzing data from batch processes, along with a review of intelligent and cognitive tools that can be used. The book is centered on evolving novel intelligent/cognitive models and algorithms to develop sustainable solutions for the mitigation of environmental pollution. It unveils intelligent and cognitive models to address issues related to the effective monitoring of environmental pollution and sustainable environmental design. As such, the book focuses on the overall well-being of the global environment for better sustenance and livelihood. The book covers novel cognitive models for effective environmental pollution data management at par with the standards laid down by the World Health Organization. Every chapter is supported by real-life case studies, illustrative examples and video demonstrations that enlighten readers.
Blockchain Technology for Emerging Applications: A Comprehensive Approach explores recent theories and applications of the execution of blockchain technology. Chapters look at a wide range of application areas, including healthcare, digital physical frameworks, web of-things, smart transportation frameworks, interruption identification frameworks, ballot-casting, architecture, smart urban communities, and digital rights administration. The book addresses the engineering, plan objectives, difficulties, constraints, and potential answers for blockchain-based frameworks. It also looks at blockchain-based design perspectives of these intelligent architectures for evaluating and interpreting real-world trends. Chapters expand on different models which have shown considerable success in dealing with an extensive range of applications, including their ability to extract complex hidden features and learn efficient representation in unsupervised environments for blockchain security pattern analysis.
Application of Machine Learning in Smart Agriculture is the first book to present a multidisciplinary look at how technology can not only improve agricultural output, but the economic efficiency of that output as well. Through a global lens, the book approaches the subject from a technical perspective, providing important knowledge and insights for effective and efficient implementation and utilization of machine learning. As artificial intelligence techniques are being used to increase yield through optimal planting, fertilizing, irrigation, and harvesting, these are only part of the complex picture which must also take into account the economic investment and its optimized return. The performance of machine learning models improves over time as the various mathematical and statistical models are proven. Presented in three parts, Application of Machine Learning in Smart Agriculture looks at the fundamentals of smart agriculture; the economics of the technology in the agricultural marketplace; and a diverse representation of the tools and techniques currently available, and in development. This book is an important resource for advanced level students and professionals working with artificial intelligence, internet of things, technology and agricultural economics.
Machine Learning Algorithms for Signal and Image Processing Enables readers to understand the fundamental concepts of machine and deep learning techniques with interactive, real-life applications within signal and image processing Machine Learning Algorithms for Signal and Image Processing aids the reader in designing and developing real-world applications using advances in machine learning to aid and enhance speech signal processing, image processing, computer vision, biomedical signal processing, adaptive filtering, and text processing. It includes signal processing techniques applied for pre-processing, feature extraction, source separation, or data decompositions to achieve machine learning tasks. Written by well-qualified authors and contributed to by a team of experts within the field, the work covers a wide range of important topics, such as: Speech recognition, image reconstruction, object classification and detection, and text processing Healthcare monitoring, biomedical systems, and green energy How various machine and deep learning techniques can improve accuracy, precision rate recall rate, and processing time Real applications and examples, including smart sign language recognition, fake news detection in social media, structural damage prediction, and epileptic seizure detection Professionals within the field of signal and image processing seeking to adapt their work further will find immense value in this easy-to-understand yet extremely comprehensive reference work. It is also a worthy resource for students and researchers in related fields who are looking to thoroughly understand the historical and recent developments that have been made in the field.
Optimum-Path Forest: Theory, Algorithms, and Applications was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification. Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. In recent years, multi-label and semi-supervised versions were also developed to handle video classification problems. The book presents the principles, algorithms and applications of Optimum-Path Forest, giving the theory and state-of-the-art as well as insights into future directions.
Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources.
Handbook of Pediatric Brain Imaging: Methods and Applications presents state-of-the-art research on pediatric brain image acquisition and analysis from a broad range of imaging modalities, including MRI, EEG and MEG. With rapidly developing methods and applications of MRI, this book strongly emphasizes pediatric brain MRI, elaborating on the sub-categories of structure MRI, diffusion MRI, functional MRI, perfusion MRI and other MRI methods. It integrates a pediatric brain imaging perspective into imaging acquisition and analysis methods, covering head motion, small brain sizes, small cerebral blood flow of neonates, dynamic cortical gyrification, white matter tract growth, and much more.
Cyber-Physical Systems: AI and COVID-19 highlights original research which addresses current data challenges in terms of the development of mathematical models, cyber-physical systems-based tools and techniques, and the design and development of algorithmic solutions, etc. It reviews the technical concepts of gathering, processing and analyzing data from cyber-physical systems (CPS) and reviews tools and techniques that can be used. This book will act as a resource to guide COVID researchers as they move forward with clinical and epidemiological studies on this outbreak, including the technical concepts of gathering, processing and analyzing data from cyber-physical systems (CPS). The major problem in the identification of COVID-19 is detection and diagnosis due to non-availability of medicine. In this situation, only one method, Reverse Transcription Polymerase Chain Reaction (RT-PCR) has been widely adopted and used for diagnosis. With the evolution of COVID-19, the global research community has implemented many machine learning and deep learning-based approaches with incremental datasets. However, finding more accurate identification and prediction methods are crucial at this juncture.
Deep Learning in Bioinformatics: Techniques and Applications in Practice introduces the topic in an easy-to-understand way, exploring how it can be utilized for addressing important problems in bioinformatics, including drug discovery, de novo molecular design, sequence analysis, protein structure prediction, gene expression regulation, protein classification, biomedical image processing and diagnosis, biomolecule interaction prediction, and in systems biology. The book also presents theoretical and practical successes of deep learning in bioinformatics, pointing out problems and suggesting future research directions. Dr. Izadkhah provides valuable insights and will help researchers use deep learning techniques in their biological and bioinformatics studies.
Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning.
Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up! In Build a Large Language Model (from Scratch) bestselling author Sebastian Raschka guides you step by step through creating your own LLM. Each stage is explained with clear text, diagrams, and examples. You’ll go from the initial design and creation, to pretraining on a general corpus, and on to fine-tuning for specific tasks. Build a Large Language Model (from Scratch) teaches you how to:
Build a Large Language Model (from Scratch) takes you inside the AI black box to tinker with the internal systems that power generative AI. As you work through each key stage of LLM creation, you’ll develop an in-depth understanding of how LLMs work, their limitations, and their customization methods. Your LLM can be developed on an ordinary laptop, and used as your own personal assistant.
5G IoT and Edge Computing for Smart Healthcare addresses the importance of a 5G IoT and Edge-Cognitive-Computing-based system for the successful implementation and realization of a smart-healthcare system. The book provides insights on 5G technologies, along with intelligent processing algorithms/processors that have been adopted for processing the medical data that would assist in addressing the challenges in computer-aided diagnosis and clinical risk analysis on a real-time basis. Each chapter is self-sufficient, solving real-time problems through novel approaches that help the audience acquire the right knowledge. With the progressive development of medical and communication - computer technologies, the healthcare system has seen a tremendous opportunity to support the demand of today's new requirements.
|
You may like...
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R3,925
Discovery Miles 39 250
Intelligent Edge Computing for Cyber…
D. Jude Hemanth, Bb Gupta, …
Paperback
R2,954
Discovery Miles 29 540
|