![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
Quantum Inspired Computational Intelligence: Research and Applications explores the latest quantum computational intelligence approaches, initiatives, and applications in computing, engineering, science, and business. The book explores this emerging field of research that applies principles of quantum mechanics to develop more efficient and robust intelligent systems. Conventional computational intelligence-or soft computing-is conjoined with quantum computing to achieve this objective. The models covered can be applied to any endeavor which handles complex and meaningful information.
Developing new approaches and reliable enabling technologies in the healthcare industry is needed to enhance our overall quality of life and lead to a healthier, innovative, and secure society. Further study is required to ensure these current technologies, such as big data analytics and artificial intelligence, are utilized to their utmost potential and are appropriately applied to advance society. Big Data Analytics and Artificial Intelligence in the Healthcare Industry discusses technologies and emerging topics regarding reliable and innovative solutions applied to the healthcare industry and considers various applications, challenges, and issues of big data and artificial intelligence for enhancing our quality of life. Covering a range of topics such as electronic health records, machine learning, and e-health, this reference work is ideal for healthcare professionals, computer scientists, data analysts, researchers, practitioners, scholars, academicians, instructors, and students.
Today's "machine-learning" systems, trained by data, are so effective that we've invited them to see and hear for us-and to make decisions on our behalf. But alarm bells are ringing. Recent years have seen an eruption of concern as the field of machine learning advances. When the systems we attempt to teach will not, in the end, do what we want or what we expect, ethical and potentially existential risks emerge. Researchers call this the alignment problem. Systems cull resumes until, years later, we discover that they have inherent gender biases. Algorithms decide bail and parole-and appear to assess Black and White defendants differently. We can no longer assume that our mortgage application, or even our medical tests, will be seen by human eyes. And as autonomous vehicles share our streets, we are increasingly putting our lives in their hands. The mathematical and computational models driving these changes range in complexity from something that can fit on a spreadsheet to a complex system that might credibly be called "artificial intelligence." They are steadily replacing both human judgment and explicitly programmed software. In best-selling author Brian Christian's riveting account, we meet the alignment problem's "first-responders," and learn their ambitious plan to solve it before our hands are completely off the wheel. In a masterful blend of history and on-the ground reporting, Christian traces the explosive growth in the field of machine learning and surveys its current, sprawling frontier. Readers encounter a discipline finding its legs amid exhilarating and sometimes terrifying progress. Whether they-and we-succeed or fail in solving the alignment problem will be a defining human story. The Alignment Problem offers an unflinching reckoning with humanity's biases and blind spots, our own unstated assumptions and often contradictory goals. A dazzlingly interdisciplinary work, it takes a hard look not only at our technology but at our culture-and finds a story by turns harrowing and hopeful.
In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: "Introduction and Background on Control Theory", "Adaptive Control and Neuroscience", "Adaptive Learning Algorithms", "Cyber-Physical Systems and Cooperative Control", "Applications". The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. * Collection of chapters from several well-known professors and researchers that will showcase their recent work * Presents different state-of-the-art control approaches and theory for complex systems * Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams * Real system examples and figures throughout, make ideas concrete
The book aims to integrate the aspects of IoT, Cloud computing and data analytics from diversified perspectives. The book also plans to discuss the recent research trends and advanced topics in the field which will be of interest to academicians and researchers working in this area. Thus, the book intends to help its readers to understand and explore the spectrum of applications of IoT, cloud computing and data analytics. Here, it is also worth mentioning that the book is believed to draw attention on the applications of said technology in various disciplines in order to obtain enhanced understanding of the readers. Also, this book focuses on the researches and challenges in the domain of IoT, Cloud computing and Data analytics from perspectives of various stakeholders.
AI-ENABLED 6G NETWORKS AND APPLICATIONS Provides authoritative guidance on utilizing AI techniques in 6G network design and optimization Written and edited by active researchers, this book covers hypotheses and practical considerations and provides insights into the design of evolutionary AI algorithms for 6G networks, with focus on network transparency, interpretability and simulatability for vehicular networks, space systems, surveillance systems and their usages in different emerging engineering fields. AI-Enabled 6G Networks and Applications includes a review of AI techniques for 6G Networks and will focus on deployment of AI techniques to efficiently and effectively optimize the network performance, including AI-empowered mobile edge computing, intelligent mobility and handover management, and smart spectrum management. This book includes the design of a set of evolutionary AI hybrid algorithms with communication protocols, showing how to use them in practice to solve problems relating to vehicular networks, aerial networks, and communication networks. Reviews various types of AI techniques such as AI-empowered mobile edge computing, intelligent handover management, and smart spectrum management Describes how AI techniques manage computation efficiency, algorithm robustness, hardware development, and energy management Identifies and provides solutions to problems in current 4G/5G networks and emergent 6G architectures Discusses privacy and security issues in IoT-enabled 6G Networks Examines the use of machine learning to achieve closed-loop optimization and intelligent wireless communication AI-Enabled 6G Networks and Applications is an essential reference guide to advanced hybrid computational intelligence methods for 6G supportive networks and protocols, suitable for graduate students and researchers in network forensics and optimization, computer science, and engineering.
Recent advancements in the technology of medical imaging, such as CT and MRI scanners, are making it possible to create more detailed 3D and 4D images. These powerful images require vast amounts of digital data to help with the diagnosis of the patient. Artificial intelligence (AI) must play a vital role in supporting with the analysis of this medical imaging data, but it will only be viable as long as healthcare professionals and AI interact to embrace deep thinking platforms such as automation in the identification of diseases in patients. AI Innovation in Medical Imaging Diagnostics is an essential reference source that examines AI applications in medical imaging that can transform hospitals to become more efficient in the management of patient treatment plans through the production of faster imaging and the reduction of radiation dosages through the PET and SPECT imaging modalities. The book also explores how data clusters from these images can be translated into small data packages that can be accessed by healthcare departments to give a real-time insight into patient care and required interventions. Featuring research on topics such as assistive healthcare, cancer detection, and machine learning, this book is ideally designed for healthcare administrators, radiologists, data analysts, computer science professionals, medical imaging specialists, diagnosticians, medical professionals, researchers, and students.
Strategy, Leadership and AI in the Cyber Ecosystem investigates the restructuring of the way cybersecurity and business leaders engage with the emerging digital revolution towards the development of strategic management, with the aid of AI, and in the context of growing cyber-physical interactions (human/machine co-working relationships). The book explores all aspects of strategic leadership within a digital context. It investigates the interactions from both the firm/organization strategy perspective, including cross-functional actors/stakeholders who are operating within the organization and the various characteristics of operating in a cyber-secure ecosystem. As consumption and reliance by business on the use of vast amounts of data in operations increase, demand for more data governance to minimize the issues of bias, trust, privacy and security may be necessary. The role of management is changing dramatically, with the challenges of Industry 4.0 and the digital revolution. With this intelligence explosion, the influence of artificial intelligence technology and the key themes of machine learning, big data, and digital twin are evolving and creating the need for cyber-physical management professionals.
Machine learning and data analytics can be used to inform technical, commercial and financial decisions in the maritime industry. Applications of Machine Learning and Data Analytics Models in Maritime Transportation explores the fundamental principles of analysing maritime transportation related practical problems using data-driven models, with a particular focus on machine learning and operations research models. Data-enabled methodologies, technologies, and applications in maritime transportation are clearly and concisely explained, and case studies of typical maritime challenges and solutions are also included. The authors begin with an introduction to maritime transportation, followed by chapters providing an overview of ship inspection by port state control, and the principles of data driven models. Further chapters cover linear regression models, Bayesian networks, support vector machines, artificial neural networks, tree-based models, association rule learning, cluster analysis, classic and emerging approaches to solving practical problems in maritime transport, incorporating shipping domain knowledge into data-driven models, explanation of black-box machine learning models in maritime transport, linear optimization, advanced linear optimization, and integer optimization. A concluding chapter provides an overview of coverage and explores future possibilities in the field. The book will be especially useful to researchers and professionals with expertise in maritime research who wish to learn how to apply data analytics and machine learning to their fields.
Introduction to EEG- and Speech-Based Emotion Recognition Methods examines the background, methods, and utility of using electroencephalograms (EEGs) to detect and recognize different emotions. By incorporating these methods in brain-computer interface (BCI), we can achieve more natural, efficient communication between humans and computers. This book discusses how emotional states can be recognized in EEG images, and how this is useful for BCI applications. EEG and speech processing methods are explored, as are the technological basics of how to operate and record EEGs. Finally, the authors include information on EEG-based emotion recognition, classification, and a proposed EEG/speech fusion method for how to most accurately detect emotional states in EEG recordings.
Ascend AI Processor Architecture and Programming: Principles and Applications of CANN offers in-depth AI applications using Huawei's Ascend chip, presenting and analyzing the unique performance and attributes of this processor. The title introduces the fundamental theory of AI, the software and hardware architecture of the Ascend AI processor, related tools and programming technology, and typical application cases. It demonstrates internal software and hardware design principles, system tools and programming techniques for the processor, laying out the elements of AI programming technology needed by researchers developing AI applications. Chapters cover the theoretical fundamentals of AI and deep learning, the state of the industry, including the current state of Neural Network Processors, deep learning frameworks, and a deep learning compilation framework, the hardware architecture of the Ascend AI processor, programming methods and practices for developing the processor, and finally, detailed case studies on data and algorithms for AI.
Methods and Techniques in Deep Learning Introduces multiple state-of-the-art deep learning architectures for mmWave radar in a variety of advanced applications Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions provides a timely and authoritative overview of the use of artificial intelligence (AI)-based processing for various mmWave radar applications. Focusing on practical deep learning techniques, this comprehensive volume explains the fundamentals of deep learning, reviews cutting-edge deep metric learning techniques, describes different typologies of reinforcement learning (RL) algorithms, highlights how domain adaptation (DA) can be used for improving the performance of machine learning (ML) algorithms, and more. Throughout the book, readers are exposed to product-ready deep learning solutions while learning skills that are relevant for building any industrial-grade, sensor-based deep learning solution. A team of authors with more than 70 filed patents and 100 published papers on AI and sensor processing illustrates how deep learning is enabling a range of advanced industrial, consumer, and automotive applications of mmWave radars. In-depth chapters cover topics including multi-modal deep learning approaches, the elemental blocks required to formulate Bayesian deep learning, how domain adaptation (DA) can be used for improving the performance of machine learning algorithms, and geometric deep learning are used for processing point clouds. In addition, the book: Discusses various advanced applications and how their respective challenges have been addressed using different deep learning architectures and algorithms Describes deep learning in the context of computer vision, natural language processing, sensor processing, and mmWave radar sensors Demonstrates how deep parametric learning reduces the number of trainable parameters and improves the data flow Presents several human-machine interface (HMI) applications such as gesture recognition, human activity classification, human localization and tracking, in-cabin automotive occupancy sensing Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions is an invaluable resource for industry professionals, researchers, and graduate students working in systems engineering, signal processing, sensors, data science, and AI.
Artificial Intelligence in Cancer: Diagnostic to Tailored Treatment provides theoretical concepts and practical techniques of AI and its applications in cancer management, building a roadmap on how to use AI in cancer at different stages of healthcare. It discusses topics such as the impactful role of AI during diagnosis and how it can support clinicians to make better decisions, AI tools to help pathologists identify exact types of cancer, how AI supports tumor profiling and can assist surgeons, and the gains in precision for oncologists using AI tools. Additionally, it provides information on AI used for survival and remission/recurrence analysis. The book is a valuable source for bioinformaticians, cancer researchers, oncologists, clinicians and members of the biomedical field who want to understand the promising field of AI applications in cancer management.
Due to the growing prevalence of artificial intelligence technologies, schools, museums, and art galleries will need to change traditional ways of working and conventional thought processes to fully embrace their potential. Integrating virtual and augmented reality technologies and wearable devices into these fields can promote higher engagement in an increasingly digital world. Virtual and Augmented Reality in Education, Art, and Museums is an essential research book that explores the strategic role and use of virtual and augmented reality in shaping visitor experiences at art galleries and museums and their ability to enhance education. Highlighting a range of topics such as online learning, digital heritage, and gaming, this book is ideal for museum directors, tour developers, educational software designers, 3D artists, designers, curators, preservationists, conservationists, education coordinators, academicians, researchers, and students.
Artificial Intelligence Medicine: Technical Basis and Clinical Applications presents a comprehensive overview of the field, ranging from its history and technical foundations, to specific clinical applications and finally to prospects. Artificial Intelligence (AI) is expanding across all domains at a breakneck speed. Medicine, with the availability of large multidimensional datasets, lends itself to strong potential advancement with the appropriate harnessing of AI. The integration of AI can occur throughout the continuum of medicine: from basic laboratory discovery to clinical application and healthcare delivery. Integrating AI within medicine has been met with both excitement and scepticism. By understanding how AI works, and developing an appreciation for both limitations and strengths, clinicians can harness its computational power to streamline workflow and improve patient care. It also provides the opportunity to improve upon research methodologies beyond what is currently available using traditional statistical approaches. On the other hand, computers scientists and data analysts can provide solutions, but often lack easy access to clinical insight that may help focus their efforts. This book provides vital background knowledge to help bring these two groups together, and to engage in more streamlined dialogue to yield productive collaborative solutions in the field of medicine.
Based on scientific understanding and empirical evidence of how humans understand and interact with robotic and autonomous systems, the author reviews the concerns that have been raised around the deployment of AI and robots in human society, and the potential for disruption and harm. He explains why transparency ought to be a fundamental design consideration for Human Computer Interaction (HCI) and artificial intelligent systems. Starting with a survey of global research in the field and what transparency means in the wider context of trust, control and ethics, the author then introduces a transparent robot control architecture, and the impact of transparency using real-time displays. He presents a case study of a muttering robot, and covers current and upcoming standards for transparency, as well as future perspectives for the design, manufacture and operation of autonomous robotic systems. Specifically, chapters cover transparency in the wider context of trust; a transparent robot control architecture, the impact of transparency using real-time displays, transparency using audio - the Muttering Robot, the effects of appearance on transparency, synthesis and further work, and several examples of Instinct reactive planner commands. This book provides key insights into transparency in robots and autonomous systems for industry, academic researchers and engineers working on intelligent autonomous system design, human robot interaction, AI, and machine ethics. It also offers points of interest for professionals developing governmental or organisational policies and standards for the design of intelligent autonomous and AI systems, and government and standard bodies working in the emerging applications of AI.
The field of healthcare is seeing a rapid expansion of technological advancement within current medical practices. The implementation of technologies including neural networks, multi-model imaging, genetic algorithms, and soft computing are assisting in predicting and identifying diseases, diagnosing cancer, and the examination of cells. Implementing these biomedical technologies remains a challenge for hospitals worldwide, creating a need for research on the specific applications of these computational techniques. Deep Neural Networks for Multimodal Imaging and Biomedical Applications provides research exploring the theoretical and practical aspects of emerging data computing methods and imaging techniques within healthcare and biomedicine. The publication provides a complete set of information in a single module starting from developing deep neural networks to predicting disease by employing multi-modal imaging. Featuring coverage on a broad range of topics such as prediction models, edge computing, and quantitative measurements, this book is ideally designed for researchers, academicians, physicians, IT consultants, medical software developers, practitioners, policymakers, scholars, and students seeking current research on biomedical advancements and developing computational methods in healthcare.
Machine learning and optimization techniques are revolutionizing our world. Other types of information technology have not progressed as rapidly in recent years, in terms of real impact. The aim of this book is to present some of the innovative techniques in the field of optimization and machine learning, and to demonstrate how to apply them in the fields of engineering. Optimization and Machine Learning presents modern advances in the selection, configuration and engineering of algorithms that rely on machine learning and optimization. The first part of the book is dedicated to applications where optimization plays a major role, and the second part describes and implements several applications that are mainly based on machine learning techniques. The methods addressed in these chapters are compared against their competitors, and their effectiveness in their chosen field of application is illustrated. |
You may like...
Infinite Dimensional Analysis, Quantum…
Luigi Accardi, Farrukh Mukhamedov, …
Hardcover
R4,065
Discovery Miles 40 650
Statistical Regression Modeling with R…
Ding-Geng (Din) Chen, Jenny K. Chen
Hardcover
R3,345
Discovery Miles 33 450
Handbook of Floating-Point Arithmetic
Jean-Michel Muller, Nicolas Brunie, …
Hardcover
R4,055
Discovery Miles 40 550
|