![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering
This thesis focuses on the study of interactions between protein and peptides and their potential applications in cell imaging and nanoparticle surface modification. Drawing inspiration from naturally occurring coiled-coil binding pairs, it proposes a novel covalent peptide tag and probe system, based on the concept of "affinity guided covalent conjugation." This newly established methodology provides complementary resolution to protein labeling, imaging and trafficking. By systematically investigating the coordination interaction between protein and quantum dots using various engineered protein ligands, this thesis proposes a general rule for protein self-assembly on the surface of quantum dots and reports a revolutionized nanobelt protein in accordance with this rule. It is an extraordinary example of interdisciplinary research, providing answers to real-life biological problems from a chemistry perspective.
Useful as a reference for engineers in industry and as an advanced
level text for graduate engineering students, Multiphase Flow and
Fluidization takes the reader beyond the theoretical to demonstrate
how multiphase flow equations can be used to provide applied,
practical, predictive solutions to industrial fluidization
problems. Written to help advance progress in the emerging science
of multiphase flow, this book begins with the development of the
conservation laws and moves on through kinetic theory, clarifying
many physical concepts (such as particulate viscosity and solids
pressure) and introducing the new dependent variable--the volume
fraction of the dispersed phase. Exercises at the end of each
chapterare provided for further study and lead into applications
not covered in the text itself.
What will our lives be like fifty years from now? What will we know about ourselves as humans, and how will that affect our lives? It's impossible to know the future for certain, but one thing we do know--perhaps nothing will alter our future more than the Genetics Revolution of the past thirty-five years. This book clarifies the history and examines the possible impact of five major areas of genetic research:
Why a Second Edition?
High Throughput Formulation Development of Biopharmaceuticals: Practical Guide to Methods and Applications provides the latest developments and information on the science of stable and safe drug product formulations, presenting a comprehensive review and detailed description of modern methodologies in the field of formulation development, a process starting with candidate and pre-formulation screening in its early development phase and then progressing to the refinement of robust formulations during commercialization in the later phases of development. The title covers topics such as experiment design, automation of sample preparation and measurements, high-throughput analytics, stress-inducing methods, statistical analysis of large amounts of formulation study data, emerging technologies, and the presentation of several case studies, along with a concluding summary.
Membrane Characterization provides a valuable source of information on how membranes are characterized, an extremely limited field that is confined to only brief descriptions in various technical papers available online. For the first time, readers will be able to understand the importance of membrane characterization, the techniques required, and the fundamental theory behind them. This book focuses on characterization techniques that are normally used for membranes prepared from polymeric, ceramic, and composite materials.
This Volume presents methods for analysing and quantifying petroleum, hydrocarbons and lipids, based on their chemical and physical properties as well as their biological effects. It features protocols for extracting hydrocarbons from solid matrices, water and air, and a dedicated chapter focusing on volatile organic compounds. Several approaches for separating and detecting diverse classes of hydrocarbons and lipids are described, including: (tandem) gas chromatography (GC) coupled with mass spectrometry (MS) or flame-ionisation detection, Fourier-transform induction-coupled-resonance MS, and fluorescence-based techniques. The book details high-performance liquid chromatography MS for microbial lipids, as well as a combination of techniques for naphthenic acids. Two chapters focus on quantifying bioavailable hydrocarbon fractions by using cyclodextrin sorbents and bacterial bioreporters, respectively, while a closing chapter explains how compound-specific stable-isotope analysis can be used to measure the fate of hydrocarbons in the environment. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
This book addresses the potential of the transformation of biomass into a wide range of marketable products, and examines the biological, biochemical, physical and thermal processing of biomass into products such as fuels, power, heat, feeds, chemicals and materials. Respective chapters explore various topics including biomass characterization, biomass pre-conditioning and sustainability analysis, aspects that are supplemented by a global overview of their implementation in current pilot bio-refineries. Providing a valuable resource to energy engineers, chemical engineers, biotechnologists and economists, this book will also be of great interest to students and policymakers.
The "greening" of industry processes - i.e., making them more sustainable - is a popular and often lucrative trend which has seen increased attention in recent years. Green Chemical Processes, the 2nd volume of Green Chemical Processing, covers the hot topic of sustainability in chemistry with a view to education, as well as considering corporate and environmental interests, e.g. in the context of energy production. The diverse team of authors allows for a balance between these different, but interconnected perspectives. The American Chemical Society's 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
The continued greening of the energy sector, with inroads being made through numerous sources of materials that can produce energy, is the main focus of this, Green Chemical Processing, Volume 8. It includes contributions from area experts in widely different fields, all involved in energy production, and makes connections to the 12 Principles of Green Chemistry.
Biosensors are essential to an ever-expanding range of applications, including healthcare; drug design; detection of biological, chemical, and toxic agents; environmental monitoring; biotechnology; aviation; physics; oceanography; and the protection of civilian and engineering infrastructures. This book, like the previous five books on biosensors by this author (and one by the co-author), addresses the neglected areas of analyte-receptor binding and dissociation kinetics occurring on biosensor surfaces. Topics are covered in a comprehensive fashion, with homogeneous presentation for the benefit of the reader. The contributors address the economic aspects of biosensors and incorporate coverage of biosensor fabrication and nanobiosensors, among other topics. The comments, comparison, and discussion presented provides a better perspective of where the field of biosensors is heading.
Proteomics, like other post-genomics tools, has been growing at a rapid pace and has important applications in numerous fields of science. While its use in animal and veterinary sciences is still limited, there have been considerable advances in this field in recent years, in areas as diverse as physiology, nutrition and food of animal origin processing. This is mainly as a consequence of a wider availability and better understanding of proteomics methodologies by animal and veterinary researchers. This book provides a comprehensive, state-of-the-art account of the status of farm-animal proteomics research, focusing on the principles behind proteomics methodologies and its specific applications and offering clear example.
This book covers both basic and applied sciences in a rather
specified area of pulp and paper manufacture. The basic science of
lignocellulose enzymology and plant genetics is covered also in
many other contexts, whereas the application of biotechnology in
process and product development is thoroughly reviewed. All the
latest advances as well as new ideas of the research field are
covered. This book will serve as an updated and compact information
package of biotechnical aspects and the most recent advances of the
pulp and paper industry sector.
This book presents new approaches to security risk analysis and scenario building on the basis of water works such as flood barriers and storm surge barriers. Defending flood barriers is not only important because of climate change and rising sea levels, but also due to the vulnerability of fresh water supplies and the increasing number of people living in vulnerable low-lying river and sea deltas.
Bioremediation refers to the clean-up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation. Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions. In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.
This book offers a comprehensive overview of the microbiological fundamentals and biotechnological applications of methanotrophs: aerobic proteobacteria that can utilize methane as their sole carbon and energy source. It highlights methanotrophs' pivotal role in the global carbon cycle, in which they remove methane generated geothermally and by methanogens. Readers will learn how methanotrophs have been employed as biocatalysts for mitigating methane gas and remediating halogenated hydrocarbons in soil and underground water. Recently, methane has also attracted considerable attention as a potential next-generation carbon feedstock for industrial biotechnology, because of its abundance and low price. Methanotrophs can be used as biocatalysts for the production of fuels, chemicals and biomaterials including methanobactin from methane under environmentally benign production conditions. Sharing these and other cutting-edge insights, the book offers a fascinating read for all scientists and students of microbiology and biotechnology.
Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Gold, PGM and Oxide Minerals, Volume 2 focuses on the theory, practice, and chemistry of flotation of gold, platinum group minerals (PGMs), and the major oxide minerals, along with rare earths. It examines separation methods whose effectiveness is limited when using conventional treatment processes and considers commercial plant practices for most oxide minerals, such as pyrochlore-containing ores, copper cobalt ores, zinc ores, tin ores, and tantalum/niobium ores. It discusses the geology and mineralogy of gold, PGMs, and oxide minerals, as well as reagent and flotation practices in beneficiation. The book also looks at the factors affecting the floatability of gold minerals and describes PGM-dominated deposits such as Morensky-type deposits, hydrothermal deposits, and placer deposits. In addition, case studies of flotation and beneficiation in countries such as Canada, Africa, Russia, Chile, and Saudi Arabia are presented. This book will be useful to researchers, university students, and professors, as well as mineral processors faced with the problem of beneficiation of difficult-to-treat ores.
This book discusses the latest developments in plant-mediated fabrication of metal and metal-oxide nanoparticles, and their characterization by using a variety of modern techniques. It explores in detail the application of nanoparticles in drug delivery, cancer treatment, catalysis, and as antimicrobial agent, antioxidant and the promoter of plant production and protection. Application of these nanoparticles in plant systems has started only recently and information is still scanty about their possible effects on plant growth and development. Accumulation and translocation of nanoparticles in plants, and the consequent growth response and stress modulation are not well understood. Plants exposed to these particles exhibit both positive and negative effects, depending on the concentration, size, and shape of the nanoparticles. The impact on plant growth and yield is often positive at lower concentrations and negative at higher ones. Exposure to some nanoparticles may improve the free-radical scavenging potential and antioxidant enzymatic activities in plants and alter the micro-RNAs expression that regulate the different morphological, physiological and metabolic processes in plant system, leading to improved plant growth and yields. The nanoparticles also carry out genetic reforms by efficient transfer of DNA or complete plastid genome into the respective plant genome due to their miniscule size and improved site-specific penetration. Moreover, controlled application of nanomaterials in the form of nanofertilizer offers a more synchronized nutrient fluidity with the uptake by the plant exposed, ensuring an increased nutrient availability. This book addresses these issues and many more. It covers fabrication of different/specific nanomaterials and their wide-range application in agriculture sector, encompassing the controlled release of nutrients, nutrient-use efficiency, genetic exchange, production of secondary metabolites, defense mechanisms, and the growth and productivity of plants exposed to different manufactured nanomaterials. The role of nanofertilizers and nano-biosensors for improving plant production and protection and the possible toxicities caused by certain nanomaterials, the aspects that are little explored by now, have also been generously elucidated.
With the recent shift of chemical fertilizers and pesticides to organic agriculture, the employment of microbes that perform significant beneficial functions for plants has been highlighted. This book presents timely discussion and coverage on the use of microbial formulations, which range from powdered or charcoal-based to solution and secondary metabolite-based bioformulations. Bioformulation development of biofertilizers and biopesticides coupled with the advantages of nanobiotechnology propose significant applications in the agricultural section including nanobiosensors, nanoherbicides, and smart transport systems for the regulated release of agrochemical. Moreover, the formulation of secondary metabolites against individual phytopathogens could be used irrespective of geographical positions with higher disease incidences. The prospective advantages and uses of nanobiotechnology generate tremendous interest, as it could augment production of agricultural produce while being cost-effective both energetically and economically. This bioformulation approach is incomparable to existing technology, as the bioformulation would explicitly target the particular pathogen without harming the natural microbiome of the ecosystem. Nanobiotechnology in Bioformulations covers the constraints associated with large-scale development and commercialization of bioinoculant formations. Furthermore, exclusive emphasis is be placed on next-generation efficient bioinoculants having secondary metabolite formulations with longer shelf life and advanced competence against several phytopathogens. Valuable chapters deal with bioformulation strategies that use divergent groups of the microbiome and include detailed diagrammatic and pictorial representation. This book will be highly beneficial for both experts and novices in the fields of microbial bioformulation, nanotechnology, and nano-microbiotechnology. It discusses the prevailing status and applications available for microbial researchers and scientists, agronomists, students, environmentalists, agriculturists, and agribusiness professionals, as well as to anyone devoted to sustaining the ecosystem.
Clinical decision support systems, medical applications, and electronic health records each help to ensure the provision of efficient, accurate healthcare services, thereby providing patients with a better experience and overall reducing health care costs. Advancing Technologies and Intelligence in Healthcare and Clinical Environments Breakthroughs is a prime resource for both academic researchers and practitioners looking to advance their knowledge of the interdisciplinary areas of healthcare information technology and management research. This book addresses innovative concepts and critical issues in the emerging field of health information systems and informatics, with an emphasis on sustainable computer information systems, ensuring healthcare efficiency, and denoising MRI and ECG outputs. |
You may like...
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
Cyanobacterial Lifestyle and its…
Prashant Kumar Singh, Maria F. Fillat, …
Paperback
R3,925
Discovery Miles 39 250
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
|