![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS)
Wetlands are, by their very nature, ephemeral and transitional, which makes them challenging to characterize. Yet the need for characterizing wetlands continues to grow, particularly as we develop a better understanding of the wealth of ecosystem services that they provide. Wetland Landscape Characterization: Practical Tools, Methods, and Approaches for Landscape Ecology, Second Edition shows how wetland characterization tools, methods, and approaches can be integrated to more effectively address twenty-first-century wetland issues. A Practical Toolbox for Integrated Wetland Landscape Characterization The book explains how to locate, identify, and map the extent of wetlands to learn more about their importance to society and the larger landscape. It examines jurisdictional, regulatory, and practical applications from the scientific, engineering, and lay perspectives. Fully updated, the second edition reflects an emerging infrastructural, ecosystem goods-and-services perspective to better assist readers who may encounter these concepts and challenges as they assess and characterize wetlands. Examples and case studies illustrate a variety of situations and solutions, highlighting the use of current techniques to assess, inventory, and monitor natural resources under changing conditions. These examples offer lessons and ideas for the issues encountered every day by wetland landscape ecology practitioners. The book also refers readers to additional resources to help them solve specific challenges. New in This Edition Updates of practical geospatial methods More project-driven examples A description of the pitfalls of using ecological data at landscape scales, along with solutions Alternative techniques for a variety of practitioners Linkages between field and landscape ecological practices Online resources for practitioners New illustrations This book helps readers develop the concepts, skills, and understanding of how to best achieve project goals in the rapidly changing disciplines of landscape science and wetland ecology and management. A valuable resource, it provides practical tools, methods, and approaches for conceptualizing, designing, and implementing broad-scale wetland projects that take into account critical societal linkages.
Research into microwave radiation from the Earth s surface in the presence of vegetation canopies, as well as the development of algorithms for retrieval of soil and vegetation parameters from microwave radiometric measurements, have been actively conducted for the last thirty years by many scientific groups and organizations all over the world. The capability of the microwave radiometric method to determine soil moisture and vegetation biometric indices was revealed a quarter of a century ago by the author and many of his colleagues. In fact, soil moisture and vegetation covers play a key role in the hydrological cycle and in water and energy transfer on the border of land surface and atmosphere through evaporation and transpiration. Accomplishment of large international projects that include global monitoring of the hydrological state of land surface (EOS Aqua, SMOS, Hydros, and others) shows that microwave radiometry of soil and vegetation more and more has become an instrument of practical application and operational use. In this respect, a systematic account of questions concerning the microwave radiometry of the Earth s surface in the presence of vegetation canopies seems to be useful and is the main objective of the book."
One of major challenges facing Earth's science in the next decade and beyondis the development of an accurate long term observational data set to study global change. To accomplish this, a wide range of observations will be required to provide both new measurements, not previously achievable and measurements with a greater degreee of accuracy and resolution than the ones which are presently and currently available. Among the parameters that are currently retrieved from satellite vertical sounding observations, temperature and moisture profiles are the most important for the description of the thermodynamic state of the medium. Other parameters, like those describing the cloud fields, the surface state or the conditions close to the surface are also key parameters for meteorology and climatology. A new generation of high spectral atmospheric sounders in the infrared has recently been designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies. Among the important observations that these instruments should contribute to the climate data set are day and night global measurements of: atmospheric temperature profiles; relative humidity profiles; cloud field parameters; total ozone burden of the atmosphere; distribution of minor atmospehric gases (methane, carbonmonoxide and nitrous oxide).
This book documents research conducted on the analysis of urban growth and sprawl by using remote sensing data and GIS techniques. The research was conducted between 1980-2010 in the city of Kolkata, India. The aim of the research was to use metrics that were less demanding in terms of data and computation than normal metrics. However, it has been found that most of them were inferior in capturing insights of urban sprawl. For this book, some of these metrics have therefore been modified and new ones are proposed. The research focuses on problems associated with the analysis of urban growth by using remote sensing data from a technological perspective.
This book examines current trends and developments in the methods and applications of geospatial analysis and highlights future development prospects. It provides a comprehensive discussion of remote sensing- and geographical information system (GIS)-based data processing techniques, current practices, theories, models, and applications of geospatial analysis. Data acquisition and processing techniques such as remote sensing image selections, classifications, accuracy assessments, models of GIS data, and spatial modeling processes are the focus of the first part of the book. In the second part, theories and methods related to fuzzy sets, spatial weights and prominence, geographically weighted regression, weight of evidence, Markov-cellular automata, artificial neural network, agent-based simulation, multi-criteria evaluation, analytic hierarchy process, and a GIS network model are included. Part three presents selected best practices in geospatial analysis. The chapters, all by expert authors, are arranged so that readers who are new to the field will gain an overview and important insights. Those readers who are already practitioners will gain from the advanced and updated materials and state-of-the-art developments in geospatial analysis.
For the fourth consecutive year, the Association of Geographic Infor- tion Laboratories for Europe (AGILE) promoted the edition of a book with the collection of the scientific papers that were submitted as full-papers to the AGILE annual international conference. Those papers went through a th competitive review process. The 13 AGILE conference call for fu- papers of original and unpublished fundamental scientific research resulted in 54 submissions, of which 21 were accepted for publication in this - lume (acceptance rate of 39%). Published in the Springer Lecture Notes in Geoinformation and Car- th graphy, this book is associated to the 13 AGILE Conference on G- graphic Information Science, held in 2010 in Guimaraes, Portugal, under the title "Geospatial Thinking." The efficient use of geospatial information and related technologies assumes the knowledge of concepts that are fundamental components of Geospatial Thinking, which is built on reasoning processes, spatial conc- tualizations, and representation methods. Geospatial Thinking is associated with a set of cognitive skills consisting of several forms of knowledge and cognitive operators used to transform, combine or, in any other way, act on that same knowledge. The scientific papers published in this volume cover an important set of topics within Geoinformation Science, including: Representation and Visualisation of Geographic Phenomena; Spatiotemporal Data Analysis; Geo-Collaboration, Participation, and Decision Support; Semantics of Geoinformation and Knowledge Discovery; Spatiotemporal Modelling and Reasoning; and Web Services, Geospatial Systems and Real-time Appli- tions."
This bookisan outgrowthoften yearsof researchatthe Universityof Florida Computational NeuroEngineering Laboratory (CNEL) in the general area of statistical signal processing and machine learning. One of the goals of writing the book is exactly to bridge the two ?elds that share so many common problems and techniques but are not yet e?ectively collaborating. Unlikeotherbooks thatcoverthe state ofthe artinagiven?eld, this book cuts across engineering (signal processing) and statistics (machine learning) withacommontheme: learningseenfromthepointofviewofinformationt- orywithanemphasisonRenyi'sde?nitionofinformation.Thebasicapproach is to utilize the information theory descriptors of entropy and divergence as nonparametric cost functions for the design of adaptive systems in unsup- vised or supervised training modes. Hence the title: Information-Theoretic Learning (ITL). In the course of these studies, we discovered that the main idea enabling a synergistic view as well as algorithmic implementations, does not involve the conventional central moments of the data (mean and covariance). Rather, the core concept is the ?-norm of the PDF, in part- ular its expected value (? = 2), which we call the information potential. This operator and related nonparametric estimators link information theory, optimization of adaptive systems, and reproducing kernel Hilbert spaces in a simple and unconventional way.
Cartography and geographic information (GI) are remarkably appropriate for the requirements of early warning (EW) and crisis management (CM). The use of geospatial technology has increased tremendously in the last years. ICT has changed from just using maps created in advance, to new approaches, allowing individuals (decision-makers) to use cartography interactively, on the basis of individual user's requirements. The new generation of cartographic visualizations based on standardisation, formal modelling, use of sensors, semantics and ontology, allows for the better adaptation of information to the needs of the users. In order to design a new framework in pre-disaster and disaster management safety/security/privacy aspects of institutions and citizens need to be considered. All this can only be achieved by demonstrating new research achievements, sharing best practices (e.g. in the health area) and working towards the wider acceptance of geospatial technology in society, with the help of education and media. This book will outline research frontiers and applications of cartography and GI in EW and CM and document their roles and potentials in wider processes going on in information/knowledge-based societies.
Mapping with Words re-conceptualizes settler writing as literary cartography. The topographical descriptions of early Canadian settler writers generated not only picturesque and sublime landscapes, but also verbal maps. These worked to orient readers, reinforcing and expanding the cartographic order of the emerging colonial dominion. Drawing upon the work of critical and cultural geographers as well as literary theorists, Sarah Wylie Krotz opens up important aesthetic and political dimensions of both familiar and obscure texts from the nineteenth century, including Thomas Cary's Abram's Plains, George Monro Grant's Ocean to Ocean, and Susanna Moodie's Roughing it in the Bush. Highlighting the complex territoriality that emerges from their cartographic aesthetics, Krotz offers fresh readings of these texts, illuminating their role in an emerging spatial imaginary that was at once deeply invested in the production of colonial spaces and at the same time enmeshed in the realities of confronting Indigenous sovereignties.
This was the fourth postgraduate summer school on remote sensing to be held in Dundee. These summer schools were originated by, and continue to remain in, the programme of EARSel (European Association of Remote Sensing Laboratories) Working Group 3 on Education and Training in Remote Sensing. The first of these summer schools was held in 1980 on "Remote Sensing in Meteorology, Oceanography and Hydrology." This was followed in 1982 by a more specialised summer school on "Remote Sensing Applications in Marine Science and Technology" which built on the foundation laid in 1980 and then concentrated on the marine applications of remote sensing techniques. The present summer school was another follow-up of the original 1980 summer school but this time concentrating on the atmospheric rather than the marine applications of remote sensing techniques. The 1984 summer school had not specifically involved atmospheric and marine applications but had been involved with the use of remote sensing in the field of civil engineering. This year's summer school was extremely successful. First of all, this was due to our sponsors, for without their very significant material contributions there would have been no summer school. These sponsors included the Scientific Affairs Division of NATO, together with the European Association of Remote Sensing Laboratories, the Council of Europe, the European Space Agency, the German Aerospace Establishment (DFVLR) and the Natural Environment Research Council.
Computer-mediated participation is at the crossroads. In the early heady days of the digital revolution, access to "high" technologies such as GIS promised the empowerment of marginalized communities by providing data and information that was previously hidden away from public view. To a great extent, this goal has been achieved at least in the U.S. and Western Europe data about a range of government initiatives and raw data about different aspects of spatial planning such as land use, community facilities, property ownership are available a mouse-click away. Now, that we, the public, have access to information, are we able to make better plans for the future of our cities and regions? Are we more inclusive in our planning efforts? Are we able to foster collaborative governance structures mediated by digital technologies? In the book, I will discuss these issues, using a three-part structure. The first part of the book will be theoretical it will review the literature in the field, establish a framework to organize the literature and to link three different subject areas (participation and community development, GIS and other related technologies, and planning processes). The second part of the book will be a series of success stories, case studies that review actual situations where participatory planning using GIS has enabled community wellbeing and empowerment. These case studies will vary in scale and focus on different planning issues (planning broadly defined). The final part of the book will step back to review alternative scenarios for the future, exploring where we are headed, as the technologies we are using to plan rapidly change."
The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers
During the Conference on Air-Sea Interaction in January 1986, it was suggested to me by David Larner of Reidel Press that it may be timely for an updated compendium of air-sea interaction theory to be organized, developed, and published. Many new results were emerging at the time, i.e., results from the MARSEN, MASEX, MILDEX, and TOWARD field projects (among others) were in the process of being reported and/or published. Further, a series of new experiments such as FASINEX and HEXOS were soon to be conducted in which new strides in our knowledge of air-sea fluxes would be made. During the year following the discussions with David Larner, it became apparent that many of the advances in air-sea interaction theory during the 1970s and 1980s were associated with sponsor investments in satellite oceanography and, in particular, remote sensing research. Since ocean surface remote sensing, e.g., scatterometry and SAR, requires intimate knowledge of ocean surface dynamics, advances in remote sensing capabilities required coordinated research in air-sea fluxes, wave state, scattering theory, sensor design, and data exploitation using environmental models. Based on this interplay of disciplines, it was decided that this book be devoted to air sea interaction and remote sensing as multi-disciplinary activities.
The emphasis now placed on the concept of sediment cells as boundaries for coastal defence groups, and the development of SMPs, should help CPAs realise the importance of natural processes at the coast when designing defence and protection schemes. However, this will only be the case where defence groups exist, and where CPAs take up the challenge of developing SMPs. Coastal landscapes have been produced by the natural forces of wind, waves and tides, and many are nationally or internationally important for their habitats and natural features. Past practices at the coast, such as the construction of harbours, jetties and traditional defence systems may have contributed to the deterioration of the coast. English Nature (1992) have argued that if practices and methods of coastal defence are allowed to continue, then coastlines would be faced with worsening consequences, including: The loss of mudflats and the birds which live on them Damage to geological Sites of Special Scientific Interest (SSSIs) and scenic heritage by erosion, due to the stabilisation of the coast elsewhere Cutting of sediment supplies to beaches resulting in the loss of coastal wildlife Cessation through isolation from coastal processes, of the natural operation of spits, with serious deterioration of rare plants, animals and geomorphological and scenic qualities (English Nature, 1992) A number of designations, provided by national and international legislation do exist to aid conservation.
It was in September 1906 that the predecessor of the IAG, the 'Internationale Erdmessung', th organized the 15 General Assembly at the Hungarian Academy of Sciences in Budapest. It was 95 years later, in September 2001, that the IAG returned to this beautiful city to hold its Scientific Assembly, IAG 2001, in the historical premises of the Academy. The meeting took place from September 2-7, 2001 and continued the tradition of Scientific Assemblies, started in Tokyo (1982) and continued in Edinburgh (1989), Beijing (1993) and Rio de Janeiro (1997). Held every four years at the midpoint between General Assemblies of the IAG, they focus on giving an integrated view of geodesy to a broad spectrum of researchers and practitioners in geodesy and geophysics. The convenient location of the main building of the Hungarian Academy in downtown Budapest and the superb efforts of the Local Organizing Committee contributed in a major way to the excellent atmosphere of the meeting. As at previous meetings, the scientific part of the program was organized as a series of symposia which, as a whole, gave a broad overview of actual geodetic research activities. To emphasize an integrated view of geodesy, the symposia did not follow the pattern of the IAG Sections, but focussed on current research topics to which several IAG Sections could contribute. Each symposium had 5 sessions with presented papers and poster sessions on two consecutive days.
Geocomputation may be viewed as the application of a computational
science paradigm to study a wide range of problems in geographical
systems contexts.
Scientific visualization may be defined as the transformation of numerical scientific data into informative graphical displays. The text introduces a nonverbal model to subdisciplines that until now has mostly employed mathematical or verbal-conceptual models. The focus is on how scientific visualization can help revolutionize the manner in which the tendencies for (dis)similar numerical values to cluster together in location on a map are explored and analyzed. In doing so, the concept known as spatial autocorrelation - which characterizes these tendencies - is further demystified.
These Proceedings of the Third International Workshop introduce research results in the areas of information integration, development of GIS and GIS-applications for a wide spectrum of information systems varying considerably in purpose and scale. The new class of GIS - intelligent GIS - is considered, including principles of their building and programming technologies. Special attention is drawn to the development of ontologies and their use in GIS and GIS-applications.
This volume is the result of an invited symposium titled "Integrated Land-Use and Environmental Models: A Survey of Current Applications and Research" that was held in October 2000 at Arizona State University. The idea for the symposium arose from a belief held by many academics that we are at the watershed of a new generation of models that are more dynamic, more pragmatic, more interdiscipli nary, and more amenable to collaborative decision making. Several academics and professionals engaged in urban research had long realized that domain-specific knowledge was inadequate for understanding and managing urban growth. While interdisciplinary approaches have become critical in most social research, one general area of knowledge that stands out as having the most wide-ranging impact on current urban modeling efforts is the field comprised of environmental sciences and ecology. The symposium offered a forum for academics and professionals engaged in urban and ecological modeling to exchange ideas and experiences, specifically in areas that overlapped urban and environmental issues. The contri butions to this volume highlight the progress made in the various efforts to build integrated urban and environmental models. More importantly, each chapter shows how ideas have diffused across disciplinary boundaries to create better policy-relevant models. In addition, this book outlines some promising areas of research that could make important contributions to the field of urban and envi ronmental modeling. Integrated thinking about urban and environmental issues has been fundamental to the concept of sustainability."
The Real and Virtual Worlds of Spatial Planning brings together contributions from leaders in landscape, transportation, and urban planning. They present case studies - from North America, Europe, Australia, Asia and Africa - that ground the exploration of ideas in the realities of sustainable urban and regional planning, landscape planning and present the prospects for using virtual worlds for modeling spatial environments and their application in planning. The first part explores the challenges for planning in the real world that are caused by the dynamics of socio-spatial systems as well as by the contradictions of their evolutionary trends related to their spatial layout. The second part presents diverse concepts to model, analyze, visualize, monitor and control socio-spatial systems by using virtual worlds
In recent years 3D geo-information has become an important research area due to the increased complexity of tasks in many geo-scientific applications, such as sustainable urban planning and development, civil engineering, risk and disaster management and environmental monitoring. Moreover, a paradigm of cross-application merging and integrating of 3D data is observed. The problems and challenges facing today's 3D software, generally application-oriented, focus almost exclusively on 3D data transportability issues - the ability to use data originally developed in one modelling/visualisation system in other and vice versa. Tools for elaborated 3D analysis, simulation and prediction are either missing or, when available, dedicated to specific tasks. In order to respond to this increased demand, a new type of system has to be developed. A fully developed 3D geo-information system should be able to manage 3D geometry and topology, to integrate 3D geometry and thematic information, to analyze both spatial and topological relationships, and to present the data in a suitable form. In addition to the simple geometry types like point line and polygon, a large variety of parametric representations, freeform curves and surfaces or sweep shapes have to be supported. Approaches for seamless conversion between 3D raster and 3D vector representations should be available, they should allow analysis of a representation most suitable for a specific application.
This book provides a comprehensive summary of the recent developments in wind erosion research and a clear outline of its future directions. The physics of wind erosion, from particle entrainment to transport and deposition, is described with rigor from the viewpoints of fluid dynamics and soil physics. The techniques for quantitative wind- erosion prediction through computational modelling constitutes a unique feature of this book in contrast to others published in the same field. The author has advocated the development of integrated wind-erosion modelling systems which couple dynamic models for the atmosphere and land surface with spatially distributed data for land-surface conditions. The successful applications of such a system have demonstrated its usefulness in wind-erosion assessment and prediction on regional to continental scales. This book offers a valuable reference point for researchers and postgraduate students engaged in wind-erosion related studies, ranging from global climate change to atmospheric aerosols, dust storms, air quality, and land conservation. The second edition has been expanded and updated throughout. It includes new information regarding mineral dust, a major focal point of studies on climate change in recent years as well as lidar information. It features some simplified sections to be more readily accessible by readers.
Managing land and water is a complex affair. Decisions must be made constantly to allocate and use natural resources. Decision and action in any use of resources often have strong interactions and side-effects on others, therefore it is extremely important to monitor and forecast the impacts of the decisions very carefully. Reliable information and clear data manipulation procedures are compulsory for monitoring and forecasting. Remote Sensing has considerable potential to provide reliable information. A Geographic Information System is an easy tool for manipulating and analysing the data in a clear and fast way. This book describes in seven practical examples how GIS and Remote Sensing techniques are successfully applied in land and water management.
The book serves as a collection of multi-disciplinary contributions related to Geographic Hypermedia and highlights the technological aspects of GIS. Specifically, it focuses on its database and database management system. The methodologies for modeling and handling geographic data are described. It presents the novel models, methods and tools applied in Spatial Decision Support paradigm.
This book covers various aspects of spatial data modelling specifically regarding three-dimensional (3D) modelling and structuring. The realization of "true" 3D geoinformation spatial systems requires a high input, and the developmental process is taking place in various research centers and universities around the globe. The development of such systems and solutions, including the modelling theories are presented in this book. |
You may like...
Fat Chance - Probability from 0 to 1
Benedict Gross, Joe Harris, …
Hardcover
R1,923
Discovery Miles 19 230
The Politics of Improving Urban Air…
Wyn P. Grant, Anthony Perl, …
Hardcover
R3,342
Discovery Miles 33 420
|