![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS)
Analysis, assessment, and data management are core tools required for operation research analysts. The April 2011 conference held at the Helenic Military Academy addressed these issues with efforts to collect valuable recommendations for improving analysts' capabilities to assess and communicate the necessary qualitative data to military leaders. This unique volume is an outgrowth of the April conference and comprises of contributions from the fields of science, mathematics, and the military, bringing Greek research findings to the world. Topics cover a wide variety of mathematical methods used with application to defense and security. Each contribution considers directions and pursuits of scientists that pertain to the military as well as the theoretical background required for methods, algorithms, and techniques used in military applications. The direction of theoretical results in these applications is conveyed and open problems and future areas of focus are highlighted. A foreword will be composed by a member of N.A.T.O. or a ranking member of the armed forces. Topics covered include: applied OR and military applications, signal processing, scattering, scientific computing and applications, combat simulation and statistical modeling, satellite remote sensing, and applied informatics - cryptography and coding. The contents of this volume will be of interest to a diverse audience including military operations research analysts, the military community at large, and practitioners working with mathematical methods and applications to informatics and military science.
This publication is the first book on the development and application of digital terrain modeling for regional planning and policy support. It is a compilation of research results by international research groups at the European Commission's Joint Research Centre, providing scientific support to the development and implementation of EU environmental policy. This practice-oriented book is recommended reading for practising environmental modelers and GIS experts working on regional planning and policy support applications.
This ground-breaking work is the first to cover the fundamentals of hydrogeophysics from both the hydrogeological and geophysical perspectives. Authored by leading experts and expert groups, the book starts out by explaining the fundamentals of hydrological characterization, with focus on hydrological data acquisition and measurement analysis as well as geostatistical approaches. The fundamentals of geophysical characterization are then at length, including the geophysical techniques that are often used for hydrogeological characterization. Unlike other books, the geophysical methods and petrophysical discussions presented here emphasize the theory, assumptions, approaches, and interpretations that are particularly important for hydrogeological applications. A series of hydrogeophysical case studies illustrate hydrogeophysical approaches for mapping hydrological units, estimation of hydrogeological parameters, and monitoring of hydrogeological processes. Finally, the book concludes with hydrogeophysical frontiers, i.e. on emerging technologies and stochastic hydrogeophysical inversion approaches.
Remote Sensing from a New Perspective The idea for this book began many years ago, when I was asked to teach a course on remote sensing. Not long before that time, I had been part of the effort to develop the first database for planetary data with a common digital array format and interactive processing capabilities to correlate those data easily: the lunar consortium. All the available lunar remote sensing data were included, orbital and ground-based, ranging across the entire electromagnetic spectrum. I had used this powerful tool extensively, and, in that spirit, I was determined to create a course which covered the entire spectrum and a variety of targets. As I looked around for the equivalent of a textbook, which I was willing to pull together from several sources, I realized that available material was very heavily focused on the visual and near visual spectrum and on the Earth as a target. Even The Surveillant Science, edited by Edward Holz and published in 1973, which broke new ground in having diverse articles on most of the spectrum when it was created, focused entirely on the Earth. My personal favorite, the exceedingly well written book on remote sensing by Floyd Sabins first published in 1978, covered the visual, infrared, and microwave portions of the spectrum beautifully but focused on the Earth as well. Unhindered, I developed what I called 'packets' of material for each part of the spectrum.
This book provides a fresh analysis of the demography, health and well-being of a major African city. It brings a range of disciplinary approaches to bear on the pressing topics of urban poverty, urban health inequalities and urban growth. The approach is primarily spatial and includes the integration of environmental information from satellites and other geospatial sources with social science and health survey data. The authors Ghanaians and outsiders, have worked to understand the urban dynamics in this burgeoning West African metropolis, with an emphasis on urban disparities in health and living standards. Few cities in the global South have been examined from so many different perspectives. Our analysis employs a wide range of GIScience methods, including analysis of remotely sensed imagery and spatial statistical analysis, applied to a wide range of data, including census, survey and health clinic data, all of which are supplemented by field work, including systematic social observation, focus groups, and key informant interviews. This book aims to explain and highlight the mix of methods, and the important findings that have been emerging from this research, with the goal of providing guidance and inspiration for others doing similar work in cities of other developing nations.
Tile-based mapping systems have grown to become the dominant form of mapping system with the rise of Web-based mapping tools. The origin of this book is a desire to collect all our discoveries, techniques, and best practices for creating a til- mapping system into one combined volume. The intent of this text is to provide a comprehensive guide to the theory behind creating a tiled-map system as well as a practical guide to create a concrete implementation. Stennis Space Center, MS John Sample May 2010 Elias Ioup vii Acknowledgements The authors would like to thank the Naval Research Laboratory's Base Program, program element number 0602435N, for sponsoring this research. Additionally, the following people provided technical assistance without which this book would not have been possible: Perry Beason, Frank McCreedy, Norm Schoenhardt, Brett Hode, Bruce Lin, Annie Holladay, Juliette Ioup, and Hillary Mesick. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Background of Web-Based Mapping Applications . . . . . . . . . . . . . . . 1 1. 2 Properties of tile-based mapping systems . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 Book Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Logical Tile Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2 Global Logical Tile Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 3 Blue Marble Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 4 Mercator-Based Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 5 Variable Start Tile Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. 6 Standardized Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Tiled Mapping Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. 1 Tile Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. 1. 1 Discrete Map Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3. 1. 2 Continuous Map Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. 2 Tile Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. 2. 1 Local Tile Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital airborne cameras are now penetrating the fields of photogrammetry and remote sensing. Due to the last decade's results in research and development in the fields of for instance detector technology, computing power, memory capacity position and orientation measurement it is now possible to generate with this new generation of airborne cameras different sets of geometric and spectral data with high geometric and radiometric resolutions within a single flight. This is a decisive advantage as compared to film based airborne cameras. The linear characteristic of the opto-electronic converters is the basis for the transition from an imaging camera to an images generating measuring instrument. Because of the direct digital processing chain from the airborne camera to the data products there is no need for the processes of chemical film development and digitising the film information. Failure sources as well as investments and staff costs are avoided. But the effective use of this new technology requires the knowledge of the features of the image and information generation, its possibilities and its restrictions. This book describes all components of a digital airborne camera from the object to be imaged to the mass memory device. So the image quality influencing processes in nature are described, as for instance the reflection of the electromagnetic sun spectrum at the objects to be imaged and the influence of the atmosphere. Also, the essential features of the new digital sensor system, their characteristics and parameters, are addressed and put into the system context. The complexity of the cooperation of all camera components, as for instance optics, filters, detector elements, analogue and digital electronics, software and so forth, becomes transparent. The book includes also the description of example systems.
Forest fIres are considered a major environmental problem in many European Union Member States as well as in other parts of the world. According to a recent report of the European Commission, forest fues are a dominant feature of the landscapes of the fIve Southern European Member States - Portugal, Spain, France, Italy and Greece, and almost a half of the Community's forests have been classed as fue-risk areas. Protection from forest fues is an interdisciplinary endeavour, which needs to be addressed from both the technological and methodological point of view, and which necessitates a wide spectrum of various scientifIc disciplines. It also implies the solution of numerous practical problems (both of a generic nature and of a specifIc one) and the consideration of the characteristics of the specifIc areas in which fue fIghting is carried out. ScientifIc research is offering a major contribution to forest fIre fIghting. The European Commission (DG XII, Directorate General for Science, Research and Development) has supported since the 1980s a number of multinational research projects through its successive RTD programmes in the fIeld of the Environment.
This book contains selected papers from participants at the 4th National Cartographic Conference GeoCart'2008, held in Auckland, New Zealand in September 2008. It provides a contribution to the literature related to contemporary Geoinformation and Cartography as part of the Springer - ries "Lecture Notes in Geoinformation and Cartography". The series aims to provide publications that highlight the research and professional acti- ties taking place in this exciting discipline area. Books published thus far cover a wide range of topics and their content reflects the diverse nature of interests of contributors in the field. The GeoCart conferences are held every two years and attract attendees from Australasia and globally. They offer a forum for reflecting on past practices, exploring future possibilities and reporting on the findings of - search undertakings. They make valuable contributions to the theory and praxis of Geoinformation and Cartography. The editors of this book, Antoni Moore, from the University of Otago, and Igor Drecki, from the University of Auckland, have provided contri- tions that fall under the categories of representation, egocentric mapping, the exploration of tangible and intangible geographical phenomena by v- ual means and Web mapping. The chapters provide valuable information from contributors that illustrate the exciting developments in the dis- pline. I applaud the efforts of the editors and authors for providing this work as an insight into their fields of activity. I hope that you find this book, from the land of the Long White Cloud, a valuable resource.
This book examines current trends and developments in the methods and applications of geospatial analysis and highlights future development prospects. It provides a comprehensive discussion of remote sensing- and geographical information system (GIS)-based data processing techniques, current practices, theories, models, and applications of geospatial analysis. Data acquisition and processing techniques such as remote sensing image selections, classifications, accuracy assessments, models of GIS data, and spatial modeling processes are the focus of the first part of the book. In the second part, theories and methods related to fuzzy sets, spatial weights and prominence, geographically weighted regression, weight of evidence, Markov-cellular automata, artificial neural network, agent-based simulation, multi-criteria evaluation, analytic hierarchy process, and a GIS network model are included. Part three presents selected best practices in geospatial analysis. The chapters, all by expert authors, are arranged so that readers who are new to the field will gain an overview and important insights. Those readers who are already practitioners will gain from the advanced and updated materials and state-of-the-art developments in geospatial analysis.
This SpringerBrief details the MESSENGER Mission, the findings of which present challenges to widely held conventional views and remaining mysteries surrounding the planet. The work answers the question of why Mercury is so dense, and the implications from geochemical data on its planetary formation. It summarizes imaging and compositional data from the terrestrial planet surface processes and explains the geologic history of Mercury. It also discusses the lack of southern hemisphere coverage. Our understanding of the planet Mercury has been in a transitional phase over the decades since Mariner 10. The influx of new data from the NASA MESSENGER Mission since it was inserted into the orbit of Mercury in March of 2011 has greatly accelerated that shift. The combined compositional data of relatively high volatiles (S, K), relatively low refractories (Al, Ca), and low crustal iron, combined with an active, partially molten iron rich core, has major implications for Mercury and Solar System formation. From a scientist at NASA Goddard Space Flight Center, this presents a comprehensive overview of the discoveries from the ten-year MESSENGER mission.
The key novelty of this book is first of all in the successful attempt to conduct jointly modeling of environment in terms of physical environment related parameters and measuring similar parameters by means of multispectral remote sensing, primarily by means of passive microwave remote sensing technology. Another new step is in the development and utilization of a multilevel approach which includes remote sensing of the land and water parameters like soil moisture, depth to water table, biomass of vegetation, temperature and salinity of water, in situ measurements of similar parameters and incorporation of GIS and data sets into the models of typical environments. The part of book, which contains remote sensing is focused on multipurpose observations from aircraft obtained in many soil-climatic zones in different countries and is reach of the examples of practical application. Applied mathematicians, geophysics, hydrologists, socio-economists, statesmans and other researchers of environmental changes will find a wealth of information and ideas in this book.
This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inverse problems of remote sensing. They also play an important role already while designing the remote sensing experiment, where they are used to estimate the retrieval uncertainties of the geophysical parameters with given measurement errors of the instrument, thus providing means for formulations of corresponding requirements to the specific remote sensing instrument. If the quantitative models of geophysical objects can be formulated in an analytic form, then sensitivity analysis is reduced to differential calculus. But in most cases, the practical geophysical models used in remote sensing are based on numerical solutions of forward problems - differential equations with initial and/or boundary conditions. As a result, these models cannot be formulated in an analytic form and this is where the methods of SA become indispensable. This book is intended for a wide audience. The beginners in remote sensing could use it as a single source, covering key issues of SA, from general principles, through formulation of corresponding linearized and adjoint problems, to practical applications to uncertainty analysis and inverse problems in remote sensing. The experts, already active in the field, may find useful the alternative formulations of some key issues of SA, for example, use of individual observables, instead of a widespread use of the cumulative cost function. The book also contains an overview of author's matrix operator approach to formulation of adjoint problems for forward problems based on the higher-order partial differential equations. This approach still awaits its publication in the periodic literature and thus may be of interest to readership across all levels of expertise.
This book provides a cross-section of cutting-edge research areas being pursued by researchers in spatial data handling and geographic information science (GIS). It presents selected papers on the advancement of spatial data handling and GIS in digital cartography, geospatial data integration, geospatial database and data infrastructures, geospatial data modeling, GIS for sustainable development, the interoperability of heterogeneous spatial data systems, location-based services, spatial knowledge discovery and data mining, spatial decision support systems, spatial data structures and algorithms, spatial statistics, spatial data quality and uncertainty, the visualization of spatial data, and web and wireless applications in GIS.
This book contains the results of a 9 year (1995-2004) investigation of the Canary Islands Exclusive Economic Zone, using state of the art technology. The coverage includes a multibeam survey demonstrating the magnitude of catastrophic failures of the Canary Islands; a comparison of the morphology of the Canary Islands with Hawaii; evaluation of hydrothermal activity associated with Mesozoic salt diapirs; and many more articles.
A unique pictorial history of astronomical exploration from the earliest prehistoric observatories to the latest satellite images With 280 spectacular images and an inspiring story imparting the excitement of discovery, Sun and Moon marks the anniversary of the first moon landing by Apollo 11 in July 1969, and the 40th anniversary of NASA's geological survey of the moon, with its extraordinary cartography. It illustrates how the development of photography and cartography - the means of documenting other worlds - is linked indelibly to the charting of the heavens, from the first image on a glass plate to the Hubble Space Telescope. Sun and Moon is the gift of the season for anyone who has ever gazed at the stars or looked through a telescope.
Soil quality is threatened by many human-induced activities, but can also be improved by good land management. In the relatively short history of mankind on earth, the landscape and soils of the world have been drastically modified from their "natural " state. Landscapes altered by man's activities are termed "Anthroscapes" which are inextricably linked to culture and history. The challenges for today's scientists are to devise and implement sustainable land management strategies in order to preserve the land for the benefit of future generations. This book is a valuable compendium of the research experiences so far gained in studies of the context and concept of the "Anthroscape" and highlights the potential future contributions of such research to sustainable development.
This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN - the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. "This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods." (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) "Vladimir Krasnopolsky has been the "founding father" of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science." (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) "Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." " (Prof. Eugenia Kalnay, University of Maryland, USA)
This book shows how Geospatial Information Systems (GIS) can be used for operations management in public institutions. It covers theory and practical applications, ranging from tracking public health trends to mapping transportation routes to charting the safest handling of hazardous materials. Along with an expert line-up of contributors and case studies, the editor provides a complete overview of how to use GIS as part of a successful, collaborative data analysis, and how to translate the information into cost-saving decisions, or even life-saving ones.
Precision farming is an agricultural management system using global navigation satellite systems, geographic information systems, remote sensing, and data management systems for optimizing the use of nutrients, water, seed, pesticides and energy in heterogeneous field situations. This book provides extensive information on the state-of-the-art of research on precision crop protection and recent developments in site-specific application technologies for the management of weeds, arthropod pests, pathogens and nematodes. It gives the reader an up-to-date and in-depth review of both basic and applied research developments. The chapters discuss I) biology and epidemiology of pests, II) new sensor technologies, III) applications of multi-scale sensor systems, IV) sensor detection of pests in growing crops, V) spatial and non-spatial data management, VI) impact of pest heterogeneity and VII) precise mechanical and chemical pest control.
Flooding is one of the most devastating natural hazards in the world. Available records suggest that both flood frequency and severity are on the rise and this is likely to worsen in the context of climate change. As population, infrastructure and poverty grow rapidly in developing countries, particularly in urban agglomerations of 10 million people or more, floods could cause widespread devastation, economic damage and loss of life. Assessment of vulnerability and risk from naturally occurring phenomena is therefore imperative in order to achieve urban sustainability. This book uses geospatial techniques to evaluate hazards, risk and vulnerability at a metropolitan scale in a data-scarce country. An empirical study was performed using remote sensing, GIS and census data. This research offers a new approach to mapping population, infrastructures and communities at risk which can greatly contribute to the deeper understanding of flood disasters in a rapidly expanding megacity. Examples shown in this book are from Dhaka Megacity, however, the techniques and methods can easily be implemented in medium to large cities of similar characteristics. The book is essential reading for hazard researchers, geospatial scientists, disaster management professionals, geographers, urban planners, and social scientists. Ashraf M. Dewan is currently a Lecturer in the Department of Spatial Sciences at Curtin University, Western Australia (on leave from his substantive position as Associate Professor in the Geography & Environment Department at the University of Dhaka, Bangladesh).
This book is a focused, comprehensive reference on recent research on severe convective storms and tornadoes. It will contain many illustrations of severe storm phenomena from mobile Doppler radars, operational Doppler radars, photographs and numerical simulations.
The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not been solved yet. Thus, the present article provides a theoretical basis and elaboration of practical use of neural networks and satellite images to combat illegal deforestation.
This book provides a state-of-the art overview of satellite archaeology and it is an invaluable volume for archaeologists, scientists, and managers interested in using satellite Earth Observation (EO) to improve the traditional approach for archaeological investigation, protection and management of Cultural Heritage. The recent increasing development of EO techniques and the tremendous advances in Information and Communication Technologies (ICT) have resulted primarily in Cultural Heritage applications. The book focuses on new challenging prospects for the use of EO in archaeology not only for probing the subsurface to unveil sites and artifacts, but also for the management and valorization as well as for the monitoring and preservation of cultural resources. The book provides a first-class understanding of this revolutionary scenario which was unthinkable several years ago. The book offers: (i) an excellent collection of outstanding articles focusing on satellite data processing, analysis and interpretation for archaeological applications, (ii) impressive case studies, (iii) striking examples of the high potential of the integration of multi-temporal, multi-scale, multi-sensors techniques. Each chapter is composed as an authoritative contribution to help the reader grasp the value of its content. The authors are renowned experts from the international scientific community. "Audience" This book will be of interest to scientists in remote sensing applied to archeology, geoarcheology, paleo-environment, paleo-climate and cultural heritage. "
The interaction of the solar and heat radiation with the atmosphere and surface is the subject of the book. It is useful also for wide circle scientists involved in environmental studies. The book contains the description of 17 computer studying programs supporting different topics of courses. It includes only the base ground for comprehension of key topics and provides the accomplishment of practical works with using specially elaborated computer programs. Themes of practical works reflect main sections of mentioned courses of lectures. The packet of computer programs is added for solution of direct and inverse problems. It promotes deep and reliable comprehension of corresponding topics by students. All described approaches and computer programs are valuable resources for solving radiative transfer problems and they could be used by students for courses and diploma studies concerned atmospheric optics. |
You may like...
Visualizing the Semantic Web - XML-based…
Vladimir Geroimenko, Chaomei Chen
Hardcover
R2,682
Discovery Miles 26 820
Mathematics Across Contemporary Sciences…
Taher Abualrub, Abdul Salam Jarrah, …
Hardcover
Interactive Web-based Virtual Reality…
Chi Chung Ko, Chang Dong Cheng
Hardcover
R4,213
Discovery Miles 42 130
Evidence-Based Policing and Community…
James McGuire, Emily Evans, …
Hardcover
R3,692
Discovery Miles 36 920
|