Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS)
The Urban Data Management Society has organised international symposia at various locations throughout Europe since 1971, and UDMS 2013 marks its second visit to London. From its outset, UDMS has highlighted changes and trends in urban data and urban data management. However, the rate of emergence of new data and new technologies has never been as rapid as it is now. Trends including smart cities, smart phones, social media, 3D modelling, volunteered geographic information, building information modelling and the internet of things all generate information about the urban environment and the people who live there. Additionally the volume of data generated in part through such techniques has in turn resulted in research into big data how best to handle the data, analyse it, visualise it in different contexts. Thus the challenges and opportunities facing those working with these new types of urban data are manifold. Given this, the general theme for UDMS 2013 was "Recent and Emerging Trends in the Management of New Urban Data." This book contains 20 papers selected from the long papers that were submitted for UDMS 2013. Each paper was reviewed by three independent academic reviewers from around the world, both for academic quality and for clarity in communication. The book is intended to be suitable for different readers from city planners and architects to academics, students and policy makers and those involved in urban planning.
Fully automated interpretation and understanding of remotely sensed data by a computer has been a challenge for many decades, and many approaches have been developed over the years. Significant advances in knowledge-based image understanding, machine learning and artificial intelligence has led to this topic being the focus of much research in recent years. This book highlights the different theoretical and application-oriented aspects and potential solutions to the topic of automated remote sensing data analysis. Thereby, both classical knowledge-based as well as modern machine learning-oriented concepts are described. A field such as this is specialized and dynamic and also interdisciplinary and multilayered. Written by an international team of experts, the book has therefore been split into parts dealing with the concepts and applications, and the focus is on elucidating the complementarity of different lines of research rather than providing the complete set of scientific approaches.Part A of this book gives insight into the basic theories and concepts of feature extraction, image understanding and the respective assessment strategies as well as into geometric, radiometric and sensor-related fundamentals of remote sensing technology. Part B focuses on various scientific and practical applications of remote sensing data analysis. These range from the automatic detailed reconstruction of complex 3D environments to visual tracking of objects in image sequences as well as monitoring natural and anthropogenic long-term processes on a regional scale. Part C sketches recent trends in automatic analysis of remote sensing data.
Satellite imagery and data are widely used in public health surveillance to provide early warning of disease outbreaks and for averting pandemics. Convergence of these technologies began in the 1970s and has gained wide acceptance in the 21st Century. Environmental Tracking for Public Health Surveillance focuses on the expanding use of satellite sensor imagery and long-term spectral measurements for assessing and modelling Earth's environments in context of public health surveillance. It addresses vector-borne, air-borne, water-borne, and zoonotic diseases, and explores analytical methods for forecasting environmental conditions and their potential for consequent disease outbreaks. Infectious and contagious diseases are of particular interest in this volume because once parasite-vector-human host pathways are triggered by favourable biological circumstances, pandemic diseases can spread to global scale in a matter of hours. The chapters advance readers through three sets of material. Part I reviews the 1970-2012 history of satellite Earth-science surveillance technology that led to linking natural environments to human diseases, and more generally to public health applications. Part II describes specific infectious and contagious diseases and the threat of emerging and re-emerging diseases. Part III explores the kinds of satellite data, modelling, and electronic information systems being developed to expedite health intercessions and responses at local to regional and global scales of reference. Equally important are the extensive reference sections for chapters in Parts II and III. For readers interested in tracking the development of Earth-science technology, these constitute a thorough entree to both the health and environmental literature. The chapters are written jointly by experts in both the health and Earth-science technologies. Each chapter is accompanied by an extensive list of citations to provide background and validation of the current state-of-the-art for a variety of high-interest human diseases and associated health and well-being issues. The importance of day-to-day weather patterns, the impacts of severe weather events and longer-term climate cycles form the basis for developing information systems that meet goals and expectations of national and international health monitoring bodies. Environmental Tracking for Public Health Surveillance provides a state-of-the-art overview on how environmental tracking data from satellite, airborne, and ground-based sensors are being integrated into appropriate geophysical and spatial information system models to enhance public health surveillance and decision-making from local to global levels, and is intended primarily for a cross-disciplinary professional audience consisting of public health decision-makers, spatial data analysts, modelers, Earth observation specialists, and medical researchers.
Written by an expert in the development of GPS systems with digital maps and navigation, Programming GPS and OpenStreetMap Applications with Java: The RealObject Application Framework provides a concrete paradigm for object-oriented modeling and programming. It presents a thorough introduction to the use of available global positioning data for the development of applications involving digital maps. The author first describes the different formats of GPS data and digital maps and shows how to use recorded GPS traces to replay and display this data on a digital map. Then, he works through in detail the processing steps of obtaining dedicated data from OpenStreetMaps and how to extract a network for a simple navigation application. For each topic covered GPS data, OpenStreetMaps, and navigation Java code is developed that can easily be adapted to the readers needs and locality. Finally, all components are put together in a sample computer-game application modeled on the well-known board game, Scotland Yard. The computer game is intended to be a basis from which readers can develop and customize their own application for their desired geographical area. The developed application can be "published" on the Internet and made available for interactive multiplayer competition. This book provides a fun and interesting way to learn distributed programming with Java and real-world data. Open-source software is available on a companion website at www.roaf.de
This book provides an overview of the latest developments in the fast growing field of tangible user interfaces. It presents a new type of modeling environment where the users interact with geospatial data and simulations using 3D physical landscape model coupled with 3D rendering engine. Multiple users can modify the physical model, while it is being scanned, providing input for geospatial analysis and simulations. The results are then visualized by projecting images or animations back on the physical model while photorealistic renderings of human views are displayed on a computer screen or in a virtual reality headset. New techniques and software which couple the hardware set-up with open source GRASS GIS and Blender rendering engine, make the system instantly applicable to a wide range of applications in geoscience education, landscape design, computer games, stakeholder engagement, and many others. This second edition introduces a new more powerful version of the tangible modeling environment with multiple types of interaction, including polymeric sand molding, placement of markers, and delineation of areas using colored felt patches. Chapters on coupling tangible interaction with 3D rendering engine and immersive virtual environment, and a case study integrating the tools presented throughout this book, demonstrate the second generation of the system - Immersive Tangible Landscape - that enhances the modeling and design process through interactive rendering of modeled landscape. This book explains main components of Immersive Tangible Landscape System, and provides the basic workflows for running the applications. The fundamentals of the system are followed by series of example applications in geomorphometry, hydrology, coastal and fluvial flooding, fire spread, landscape and park design, solar energy, trail planning, and others. Graduate and undergraduate students and educators in geospatial science, earth science, landscape architecture, computer graphics and games, natural resources and many others disciplines, will find this book useful as a reference or secondary textbook. Researchers who want to build and further develop the system will most likely be the core audience, but also anybody interested in geospatial modeling applications (hazard risk management, hydrology, solar energy, coastal and fluvial flooding, fire spread, landscape and park design) will want to purchase this book.
This book provides an essential appraisal of the recent advances in technologies, mathematical models and computational software used by those working with geodetic data. It explains the latest methods in processing and analyzing geodetic time series data from various space missions (i.e. GNSS, GRACE) and other technologies (i.e. tide gauges), using the most recent mathematical models. The book provides practical examples of how to apply these models to estimate seal level rise as well as rapid and evolving land motion changes due to gravity (ice sheet loss) and earthquakes respectively. It also provides a necessary overview of geodetic software and where to obtain them.
This edited volume covers many aspects of the Metropolitan Landscapes. Solutions are needed to meet the demand of the citizens of a renewed metropolitan region landscape. It opens up discussions about possible toolkits for strategic actions based on understanding the territory from geographical, urban, architectural, economic, environmental, and public policy perspectives. This book intends to promote the Metropolitan dwelling quality, ensuring human well-being proposing a discussion on the resilient articulation of the interface space among the city's infrastructure, agriculture, and nature. This book results from the Symposium: Metropolitan Landscapes that MSLab of the Politecnico di Milano and ETSA (Sevilla) organized at the IALE 2019 Conference (Milan, July 2019) to manage radical territory transformation with a strategic vision. The widespread growth of urban areas indicates the importance of building resilient sustainable cities capable of minimizing climate-change impact production. The Symposium aimed to discuss the Urban Metabolism approach considering the combination of Landscapes set in a single Metropolitan Ecosystem. Accordingly, new design strategies of transformation, replacement or maintenance can compose Urban-Rural Linkage patterns and a decalage of different landscape contexts. Ecological interest in environmental sustainability, compatibility, and resilience is not tied exclusively to the balance between production and energy consumption. Thus, it is the integration over time and at several scales of the urban and rural landscapes and their inhabitants that nourish the Metropolitan Bioregion. Moreover, the Metropolitan Landscape Book's research hypothesis is the need for a Glossary, strengthening the basis of understanding Metropolitan Landscape's complexity. This book's topic is particularly relevant to Landscape Urbanism, Architecture, Urban disciplines Scholars, Students and Practitioners who want to be connected in a significant way with Metropolitan Discipline's research field.
Based on detailed research funded across two continents and involving universities in Argentina, Spain and the UK, this book sets out an innovative, multidisciplinary approach to assessing both environmental and social risks in a given territorial area. Using data from a number of Ibero-American nations, the study combines environmental, socio-economic and geographic factors to construct a set of spatial and technical indicators that measure the social vulnerability and industrial hazardousness of a defined area. Aggregating these indicators in a geographic information system (GIS) allows researchers to assess the potential risk to which a certain area and its population are subject as a result of the environmental deterioration caused by co-located industrial activity.
Unmanned Aircraft Systems (UASs) are a rapidly evolving technology with an expanding array of diverse applications. In response to the continuing evolution of this technology, this book discusses UAVs and similar systems, platforms, and sensors, as well as exploring some of their environmental applications. It explains how they can be used for mapping, monitoring, and modelling a wide variety of different environmental aspects and, at the same time, addresses some of the current constraints placed on realising the potential use of the technology, such as flight duration and distance, safety, and the invasion of privacy. Unmanned Aerial Remote Sensing: UAS for Environmental Applications is an excellent resource for any practitioner utilising remote sensing and other geospatial technologies for environmental applications, such as conservation, research, and planning. Students and academics in information science, environment and natural resources, geosciences, and geography will likewise find this comprehensive book a useful and informative resource. Features Provides necessary theoretical foundations for pertinent subject matter areas Introduces the role and value of UAVs for geographical data acquisition and the ways to acquire and process the data Provides a synthesis of ongoing research and a focus on the use of technology for small-scale image and spatial data acquisition in an environmental context Written by experts of the technology who bring together UAS tools and resources for environmental specialists.
Sixteen years ago, Franklin estimated that about 80% of data contain geo-referenced information. To date, the availability of geographic data and information is growing, together with the capacity of users to operate with IT tools and instruments. Spatial data infrastructures are growing and allow a wide number of users to rely on them. This growth has not been fully coupled to an increase of knowledge to support spatial decisions. Spatial analytical techniques, geographical analysis and modelling methods are therefore required to analyse data and to facilitate the decision process at all levels. Old geographical issues can find an answer thanks to new methods and instruments, while new issues are developing, challenging researchers towards new solutions. This volume aims to contribute to the development of new techniques and methods to improve the process of knowledge acquisition. The Geocomputational expression is related to the development and the application of new theories, methods and tools in order to provide better solutions to complex geographical problems. The geocomputational analysis discussed in this volume, could be classified according to three main domains of applications; the first one related to spatial decision support system and to spatial uncertainty, the second connected to artificial intelligence, the third based on all spatial statistics techniques.
This book reviews and summarizes the development and achievement in cartography and geographic information engineering in China over the past 60 years after the founding of the People's Republic of China. It comprehensively reflects cartography, as a traditional discipline, has almost the same long history with the world's first culture and has experienced extraordinary and great changes. The book consists of nineteen thematic chapters. Each chapter is in accordance with the unified directory structure, introduction, development process, major study achievements, problem and prospect, representative works, as well as a lot of references. It is useful as a reference both for scientists and technicians who are engaged in teaching, researching and engineering of cartography and geographic information engineering.
Glaciers and ice sheets have been melting significantly during
recent decades, posing environmental threats at local, regional and
global scales. Changes in glaciers are one of the clearest
indicators of alterations in regional climate, since they are
governed by changes in accumulation (from snowfall) and ablation
(by melting of ice). Glacier changes have been measured for the
last century by traditional field measurements, resulting in long
time series for a few glaciers. Remote sensing data and methods,
and geographic information systems, provide the means to allow
glacier changes to be monitored at a global scale, to be analysed
rapidly and to store the results and present information to both
scientific and popular audiences in a way which was not possible
before the digital revolution. Remote sensing of glaciers began
with terrestrial and aerial photography during the middle of the
20th century, but today the discipline embraces a large variety of
data types from laser scanner data to very high resolution
satellite imagery, which can be applied to the mapping of glacier
changes in terms of area, surface zonation or thickness. This book
highlights the history of the remote sensing of glaciers, the
physics of glaciers and remote sensing of them, and focuses
particularly on modern data and methods used by remote sensing
specialists and glaciologists. The book presents examples of
glacier research carried out, for example in the Alps, Norway,
Iceland, Caucasus, Patagonia, Rocky Mountains, Pakistan,
Antarctica, New Zealand, and Svalbard.
This illustrated work is intended to acquaint readers with the early maps produced in both Europe and the rest of the world, and to tell us something of their development, their makers and printers, their varieties and characteristics. The authors' chief concern is with the appearance of maps: they exclude any examination of their content, or of scientific methods of mapmaking. This book ends in the second half of the eighteenth century, when craftsmanship was superseded by specialized science and the machine. As a history of the evolution of the early map, it is a stunning work of art and science. This expanded second edition of Bagrow and Skelton's "History of Cartography" marks the reappearance of this seminal work after a hiatus of nearly a half century. As a reprint project undertaken many years after the book last appeared, finding suitable materials to work from proved to be no easy task. Because of the wealth of monochrome and color plates, the book could only be properly reproduced using the original materials. Ultimately the authors were able to obtain materials from the original printer Scotchprints or contact films made directly from original plates, thus allowing the work to preserve the beauty and clarity of the illustrations. Old maps, collated with other materials, help us to elucidate the course of human history. It was not until the eighteenth century, however, that maps were gradually stripped of their artistic decoration and transformed into plain, specialist sources of information based upon measurement. Maps are objects of historical, artistic, and cultural significance, and thus collecting them seems to need no justification, simply enjoyment.
Since the publication of the bestselling second edition of The Global Positioning System and GIS, the use of GPS as an input for GIS has evolved from a supporting analysis tool to become an essential part of real-time management tools in wide-ranging fields. Continued technological advances and decreased costs have altered the GPS vendor landscape significantly and opened the door to an array of receiver and software options. Retaining the in-depth description that made the previous edition so popular, The Global Positioning System and ArcGIS, Third Edition has expanded its coverage to review the capabilities and features common to most receivers. While it emphasizes Trimble and Magellan hardware and Trimble TerraSync and ESRI ArcPad software to capture data, the text 's broadened coverage makes it useful with virtually any hardware/software packages, so readers will be able to collect GPS data and install it in ArcGIS regardless of the data capture mechanism. Covering the latest developments in this emerging field, the third edition has been updated to include:
Using a top-down approach, each chapter begins with a theoretical overview followed by self-study exercises and projects that provide step-by-step guidance on applying the concepts using GPS hardware or a PC. The text includes a CD-ROM with GPS data sets for exercises in Trimble SSF and ESRI shapefile formats, plus other valuable learning resources. Solutions manual available upon qualified course adoption
This new edition of the well-established Kearey and Brooks text is fully updated to reflect the important developments in geophysical methods since the production of the previous edition. The broad scope of previous editions is maintained, with even greater clarity of explanations from the revised text and extensively revised figures. Each of the major geophysical methods is treated systematically developing the theory behind the method and detailing the instrumentation, field data acquisition techniques, data processing and interpretation methods. The practical application of each method to such diverse exploration applications as petroleum, groundwater, engineering, environmental and forensic is shown by case histories. The mathematics required in order to understand the text is purposely kept to a minimum, so the book is suitable for courses taken in geophysics by all undergraduate students. It will also be of use to postgraduate students who might wish to include geophysics in their studies and to all professional geologists who wish to discover the breadth of the subject in connection with their own work.
In June/July 2008 the Institute for Geoinformation and Cartography at the Vienna University of Technology organized a scientific colloquium in this city, where 15 well-known scientists presented their ideas on research for the upcoming decade. This book contains papers prepared by the participants as well as by other researchers. The eighteen papers in this book reflect the opinion of a core group of Geoinformation scientists about future research topics. Dealing with these topics poses multiple research questions for the coming years
In recent years 3D geo-information has become an important research area due to the increased complexity of tasks in many geo-scientific applications, such as sustainable urban planning and development, civil engineering, risk and disaster management and environmental monitoring. Moreover, a paradigm of cross-application merging and integrating of 3D data is observed. The problems and challenges facing today's 3D software, generally application-oriented, focus almost exclusively on 3D data transportability issues - the ability to use data originally developed in one modelling/visualisation system in other and vice versa. Tools for elaborated 3D analysis, simulation and prediction are either missing or, when available, dedicated to specific tasks. In order to respond to this increased demand, a new type of system has to be developed. A fully developed 3D geo-information system should be able to manage 3D geometry and topology, to integrate 3D geometry and thematic information, to analyze both spatial and topological relationships, and to present the data in a suitable form. In addition to the simple geometry types like point line and polygon, a large variety of parametric representations, freeform curves and surfaces or sweep shapes have to be supported. Approaches for seamless conversion between 3D raster and 3D vector representations should be available, they should allow analysis of a representation most suitable for a specific application.
This book comprises select proceedings of the International Conference on Trends and Recent Advances in Civil Engineering (TRACE 2020). The volume focuses on latest research works carried out in the area of water resources and transportation engineering. The topics include technological intervention and solution for water security, sustainability in water resources and transportation infrastructure, crop protection, resilience to disaster like flood, hurricane and drought, traffic congestion, transport planning etc. It aims to address broad spectrum of audience by covering inter-disciplinary innovative research and applications in these areas. It will be useful to graduate students, researchers, scientists, and practitioners working in water resources and transportation engineering domain.
Case Studies in Geospatial Applications to Groundwater Resources provides thorough the most up-to-date techniques in GIS and geostatistics as they relate to groundwater, through detailed case studies that prove real-world applications of remote sensing applications to this subject. Groundwater is the primary source of fresh water in many parts of the world, while come regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly. India is the largest user of groundwater in the world followed by China and the USA, with developing countries using groundwater at an unsustainable rate. Systematic planning of groundwater usage using modern techniques is essential for the proper utilization, management and modeling of this precious but shrinking natural resource. With the advent of powerful and highspeed personal computers, efficient techniques for water management have evolved, of which remote sensing, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Geostatistical techniques are of great significance. This book advances the scientific understanding, development, and application of geospatial technologies related to water resource management. Case Studies in Geospatial Applications to Groundwater Resources is a valuable reference for researchers and postgraduate students in Earth and Environmental Sciences, especially GIS, agriculture, hydrology, natural resources, and soil science, who need to be able to apply the latest technologies in groundwater research in a practical manner.
This is the first book to provide sociologists, criminologists, political scientists, and other social scientists with the methodological logic and techniques for doing spatial analysis in their chosen fields of inquiry. The book contains a wealth of examples as to why these techniques are worth doing, over and above conventional statistical techniques using SPSS or other statistical packages. GIS is a methodological and conceptual approach that allows for the linking together of spatial data, or data that is based on a physical space, with non-spatial data, which can be thought of as any data that contains no direct reference to physical locations.
Soil quality is threatened by many human-induced activities, but can also be improved by good land management. In the relatively short history of mankind on earth, the landscape and soils of the world have been drastically modified from their "natural " state. Landscapes altered by man's activities are termed "Anthroscapes" which are inextricably linked to culture and history. The challenges for today's scientists are to devise and implement sustainable land management strategies in order to preserve the land for the benefit of future generations. This book is a valuable compendium of the research experiences so far gained in studies of the context and concept of the "Anthroscape" and highlights the potential future contributions of such research to sustainable development.
Render three-dimensional data and maps with ease. Written as a self-study workbook, "Introduction to 3D Data" demystifies the sometimes confusing controls and procedures required for 3D modeling using software packages such as ArcGIS 3D Analyst and Google Earth. Going beyond the manual that comes with the software, this profusely illustrated guide explains how to use ESRI's ArcGIS 3D Analyst to model and analyze three-dimensional geographical surfaces, create 3D data, and produce displays ranging from topographically realistic maps to 3D scenes and spherical earth-like views. The engagingly user-friendly instruction: - Walks you through basic concepts of 3D data, progressing to more advanced techniques such as calculating surface area and volume - Introduces you to two major software packages: ArcGIS 3D Analyst (including ArcScene and ArcGlobe) and Google Earth - Reinforces your understanding through in-depth discussions with over thirty hands-on exercises and tutorial datasets on the support website at www.wiley/college/kennedy - Helps you apply the theory with real-world applications Whether you're a student or professional in geology, landscape architecture, transportation system planning, hydrology, or a related field, "Introduction to 3D Data" will quickly turn you into a power user of 3D GIS.
GeoComputation and Public Health is fundamentally a multi-disciplinary book, which presents an overview and case studies to exemplify numerous methods and solicitations in addressing vectors borne diseases (e.g, Visceral leishmaniasis, Malaria, Filaria). This book includes a practical coverage of the use of spatial analysis techniques in vector-borne disease using open source software solutions. Environmental factors (relief characters, climatology, ecology, vegetation, water bodies etc.) and socio-economic issues (housing type & pattern, education level, economic status, income level, domestics' animals, census data, etc) are investigated at micro -level and large scale in addressing the various vector-borne disease. This book will also generate a framework for interdisciplinary discussion, latest innovations, and discoveries on public health. The first section of the book highlights the basic and principal aspects of advanced computational practices. Other sections of the book contain geo-simulation, agent-based modeling, spatio-temporal analysis, geospatial data mining, various geocomputational applications, accuracy and uncertainty of geospatial models, applications in environmental, ecological, and biological modeling and analysis in public health research. This book will be useful to the postgraduate students of geography, remote sensing, ecology, environmental sciences and research scholars, along with health professionals looking to solve grand challenges and management on public health. |
You may like...
Writing History in the Anglo-Norman…
Laura Cleaver, Andrea Worm
Paperback
R771
Discovery Miles 7 710
Beholding Violence in Medieval and Early…
Allie Terry-Fritsch
Hardcover
R4,178
Discovery Miles 41 780
The Last Crusades - the Final Attempts…
Edwin Pears, T. A. Archer, …
Hardcover
Medieval Renaissance Baroque - A Cat's…
David A Levine, Jack Freiberg
Hardcover
R1,219
Discovery Miles 12 190
Perspectives on Hebrew Scriptures XI…
Christophe Nihan, Anna Angelini
Hardcover
R5,453
Discovery Miles 54 530
|