![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS)
Today the world's largest economies and corporations trade in data and its products to generate value in new disruptive markets. Within these markets vast streams of data are often inaccessible or untapped and controlled by powerful monopolies. Counter to this exclusive use of data is a promising world-wide "open-data" movement, promoting freely accessible information to share, reuse and redistribute. The provision and application of open data has enormous potential to transform exclusive, technocratic "smart cities" into inclusive and responsive "open-cities". This book argues that those who contribute urban data should benefit from its production. Like the city itself, the information landscape is a public asset produced through collective effort, attention, and resources. People produce data through their engagement with the city, creating digital footprints through social medial, mobility applications, and city sensors. By opening up data there is potential to generate greater value by supporting unforeseen collaborations, spontaneous urban innovations and solutions, and improved decision-making insights. Yet achieving more open cities is made challenging by conflicting desires for urban anonymity, sociability, privacy and transparency. This book engages with these issues through a variety of critical perspectives, and presents strategies, tools and case studies that enable this transformation.
This books documents the salient characters of the tectonic evolution of the Indian subcontinent. It showcases the well investigated subcontinent of Gondwana. The book is linked to an updated geological and tectonic map of this region on 1:12,000,000 in scale. The Indian subcontinent displays almost uninterrupted and unique the geological history since about Eo-Archean (~3800 Ma) to recent, with the development of many Proterozoic deformed and metamorphosed fold belts around Archean nuclei, and enormously thick undeformed platform deposits. After their stabilization during late Proterozoic, the subcontinent underwent Paleozoic rifting and deposition of coal-bearing thick sequences, followed by enormously-thick outpouring of Deccan volcanics as a consequence of huge mantle plume. The youngest event in its evolution is the Cenozoic Himalayan Orogenic Mountains, spanning the area between Nanga Parbat and Namcha Barwah; a part of which extends both in Pakistan and Myanmar.
Remote Sensing Applications in Environmental and Earth System Sciences is a contemporary, multi-disciplinary, multi-scaling, updated, and upgraded approach of applied remote sensing in the environment. The book begins with an overview of remote sensing technology, and then explains the types of data that can be used as well as the image processing and analysis methods that can be applied to each type of application through the use of case studies throughout. Includes a wide spectrum of environmental applications and issues Explains methodological image analysis and interpretation procedures for conducting a variety of environmental analyses Discusses the development of early warning systems Covers monitoring of the environment as a whole - atmosphere, land, and water Explores the latest remote sensing systems in environmental applications This book is an excellent resource for anyone who is interested in remote sensing technologies and their use in Earth systems, natural resources, and environmental science.
Focus on Geodatabases in ArcGIS Pro introduces readers to the geodatabase, the comprehensive information model for representing and managing geographic information across the ArcGIS platform. Sharing best practices for creating and maintaining data integrity, chapter topics include the careful design of a geodatabase schema, building geodatabases that include data integrity rules, populating geodatabases with existing data, working with topologies, editing data using various techniques, building 3D views, and sharing data on the web. Each chapter includes important concepts with hands-on, step-by-step tutorials, sample projects and datasets, 'Your turn' segments with less instruction, study questions for classroom use, and an independent project. Instructor resources are available by request.
Data science has recently gained much attention for a number of reasons, and among them is Big Data. Scientists (from almost all disciplines including physics, chemistry, biology, sociology, among others) and engineers (from all fields including civil, environmental, chemical, mechanical, among others) are faced with challenges posed by data volume, variety, and velocity, or Big Data. This book is designed to highlight the unique characteristics of geospatial data, demonstrate the need to different approaches and techniques for obtaining new knowledge from raw geospatial data, and present select state-of-the-art geospatial data science techniques and how they are applied to various geoscience problems.
This book discusses statistical modeling of single- and multi-channel synthetic aperture radar (SAR) images and the applications of these newly developed models in land and ocean monitoring, such as target detection and terrain classification. It is a valuable reference for researchers and engineers interested in information processing of remote sensing, radar signal processing, and image interpretation.
This book provides an essential appraisal of the recent advances in technologies, mathematical models and computational software used by those working with geodetic data. It explains the latest methods in processing and analyzing geodetic time series data from various space missions (i.e. GNSS, GRACE) and other technologies (i.e. tide gauges), using the most recent mathematical models. The book provides practical examples of how to apply these models to estimate seal level rise as well as rapid and evolving land motion changes due to gravity (ice sheet loss) and earthquakes respectively. It also provides a necessary overview of geodetic software and where to obtain them.
Spatial Analysis for Radar Remote Sensing of Tropical Forests is based on the authors' extensive involvement in Synthetic Aperture Radar (SAR) mapping projects, targeting the health of an earth ecosystem with great relevance for climate change studies: the tropical forests. The subject is developed from a vantage point provided by analysis in a combined space, scale (frequency), time, wavelength, polarization domain. The combination of space and scale offers the capability to zoom in and out like a virtual microscope to the resolution in tune with the underlying ecological phenomenon. It also enables statistical measures (correlations) related to the forest spatial distribution in case of backscatter, or to the canopy height variations in case of interferometric observations. The time dimension brings into play measures of the ecosystem dynamics, such as the flooding extent in the swamp forests, deforestation or degradation events. Wavelength and polarization agility extend the abovementioned capabilities by radar observations that are in tune with particular characteristics of the forest and terrain layers. The book's spotlight is on radar spatial random fields, these being populated by either backscatter observations or elevation data from interferometric SAR. The basic tenet here is that the spatial statistic of the fields measured by the wavelet variance (in stationary or non-stationary situations) carries fingerprints of the forest structure. Features: Uniquely focused on specific techniques that provide multi-resolution spatial and temporal analysis of forest structure characteristics and changes. Examines several large and important international remote sensing projects aimed at documenting entire tropical ecosystems. Provides novel wavelet methods for tropical forest structural measures. As the first book on this topic, this composite approach appeals to both students learning through important case studies and to researchers finding new ideas for future studies.
Geographic Information has an important role to play in linking and combining datasets through shared location, but the potential is still far from fully realized because the data is not well organized and the technology to aid this process has not been available. Developments in the Semantic Web and Linked Data, however, are making it possible to integrate data based on Geographic Information in a way that is more accessible to users. Drawing on the industry experience of a geographer and a computer scientist, Linked Data: A Geographic Perspective is a practical guide to implementing Geographic Information as Linked Data. Combine Geographic Information from Multiple Sources Using Linked Data After an introduction to the building blocks of Geographic Information, the Semantic Web, and Linked Data, the book explores how Geographic Information can become part of the Semantic Web as Linked Data. In easy-to-understand terms, the authors explain the complexities of modeling Geographic Information using Semantic Web technologies and publishing it as Linked Data. They review the software tools currently available for publishing and modeling Linked Data and provide a framework to help you evaluate new tools in a rapidly developing market. They also give an overview of the important languages and syntaxes you will need to master. Throughout, extensive examples demonstrate why and how you can use ontologies and Linked Data to manipulate and integrate real-world Geographic Information data from multiple sources. A Practical, Readable Guide for Geographers, Software Engineers, and Laypersons A coherent, readable introduction to a complex subject, this book supplies the durable knowledge and insight you need to think about Geographic Information through the lens of the Semantic Web. It provides a window to Linked Data for geographers, as well as a geographic perspective for software engineers who need to understand how to work with Geographic Information. Highlighting best practices, this book helps you organize and publish Geographic Information on the Semantic Web with more confidence.
The interdisciplinary uses of traditional cartographic resources and modern GIS tools allow for the analysis and discovery of information across a wide spectrum of fields. A Research Guide to Cartographic Resources navigates the numerous American and Canadian cartographic resources available in print, and online, offering researchers, academics and students with information on how to locate and access the large variety of resources, new and old. Dozens of different cartographic materials are highlighted and summarized, along with lists of map libraries and geospatial centers, and related professional associations. A Research Guide to Cartographic Resources consists of 18 chapters, two appendices, and a detailed index that includes place names, and libraries, structured in a manner consistent with most reference guides, including cartographic categories such as atlases, dictionaries, gazetteers, handbooks, maps, plans, GIS data and other related material. Almost all of the resources listed in this guide are categorized by geography down to the county level, making efficient work of the type of material required to meet the information needs of those interested in researching place-specific cartographic-related resources. Additionally, this guide will help those interested in not only developing a comprehensive collection in these subject areas, but get an understanding of what materials are being collected and housed in specific map libraries, geospatial centers and their related websites. Of particular value are the sections that offer directories of cartographic and GIS libraries, as well as comprehensive lists of geospatial datasets down to the county level. This volume combines the traditional and historical collections of cartography with the modern applications of GIS-based maps and geospatial datasets.
Cartography and geographic information (GI) are remarkably appropriate for the requirements of early warning (EW) and crisis management (CM). The use of geospatial technology has increased tremendously in the last years. ICT has changed from just using maps created in advance, to new approaches, allowing individuals (decision-makers) to use cartography interactively, on the basis of individual user's requirements. The new generation of cartographic visualizations based on standardisation, formal modelling, use of sensors, semantics and ontology, allows for the better adaptation of information to the needs of the users. In order to design a new framework in pre-disaster and disaster management safety/security/privacy aspects of institutions and citizens need to be considered. All this can only be achieved by demonstrating new research achievements, sharing best practices (e.g. in the health area) and working towards the wider acceptance of geospatial technology in society, with the help of education and media. This book will outline research frontiers and applications of cartography and GI in EW and CM and document their roles and potentials in wider processes going on in information/knowledge-based societies.
Analysis, assessment, and data management are core tools required for operation research analysts. The April 2011 conference held at the Helenic Military Academy addressed these issues with efforts to collect valuable recommendations for improving analysts' capabilities to assess and communicate the necessary qualitative data to military leaders. This unique volume is an outgrowth of the April conference and comprises of contributions from the fields of science, mathematics, and the military, bringing Greek research findings to the world. Topics cover a wide variety of mathematical methods used with application to defense and security. Each contribution considers directions and pursuits of scientists that pertain to the military as well as the theoretical background required for methods, algorithms, and techniques used in military applications. The direction of theoretical results in these applications is conveyed and open problems and future areas of focus are highlighted. A foreword will be composed by a member of N.A.T.O. or a ranking member of the armed forces. Topics covered include: applied OR and military applications, signal processing, scattering, scientific computing and applications, combat simulation and statistical modeling, satellite remote sensing, and applied informatics - cryptography and coding. The contents of this volume will be of interest to a diverse audience including military operations research analysts, the military community at large, and practitioners working with mathematical methods and applications to informatics and military science.
This open access book offers a summary of the development of Digital Earth over the past twenty years. By reviewing the initial vision of Digital Earth, the evolution of that vision, the relevant key technologies, and the role of Digital Earth in helping people respond to global challenges, this publication reveals how and why Digital Earth is becoming vital for acquiring, processing, analysing and mining the rapidly growing volume of global data sets about the Earth. The main aspects of Digital Earth covered here include: Digital Earth platforms, remote sensing and navigation satellites, processing and visualizing geospatial information, geospatial information infrastructures, big data and cloud computing, transformation and zooming, artificial intelligence, Internet of Things, and social media. Moreover, the book covers in detail the multi-layered/multi-faceted roles of Digital Earth in response to sustainable development goals, climate changes, and mitigating disasters, the applications of Digital Earth (such as digital city and digital heritage), the citizen science in support of Digital Earth, the economic value of Digital Earth, and so on. This book also reviews the regional and national development of Digital Earth around the world, and discusses the role and effect of education and ethics. Lastly, it concludes with a summary of the challenges and forecasts the future trends of Digital Earth. By sharing case studies and a broad range of general and scientific insights into the science and technology of Digital Earth, this book offers an essential introduction for an ever-growing international audience.
Explore how imagery and remote sensing power modern GIS. With The ArcGIS Imagery Book, you will roll up your sleeves and quickly begin putting imagery to smarter, more skillful use with your GIS. Even armchair geographers will appreciate this book and its electronic companion www.thearcgisimagerybook.com for the wealth of gorgeous, inspiring, and occasionally troubling images and links to powerful web apps and maps that weave interesting stories about our planet and the issues we face. Appropriate for those very familiar with geographic information systems and those who have never heard of the term.
Fascinating and diverse, savanna ecosystems support a combination of pastoral and agropastoral communities alongside wild and domestic herbivores that can be found nowhere else. This diversity has made the study of these areas problematic. Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales addresses some of the discontinuities in the treatment of savannas by the scientific community and documents a range of measurements, methods, technologies, applications, and modeling approaches. Based on contributions from leading authorities and experts on savanna systems worldwide, the book describes the global savanna biome in terms of its broad ecological properties, temporal dynamics, disturbance levels, and human dimensions. The text examines carbon, water, energy, and trace gas fluxes for major global savanna regions. It looks at quantitative surface properties of savannas that can be retrieved using remote sensing and numerical approaches used to explore savanna dynamics. The authors also discuss how savanna modeling and measurement approaches might be unified. By presenting this confluence of information in a single resource, the book provides a platform for examining synergies, connections, integrative opportunities, and complementarities among approaches and data sources. This information can then be used to harmonize measurement and modeling methods among scales and across disciplinary boundaries. The book builds a bridge across the markedly different perspectives on savannas by which ecologists, biogeochemists, remote sensors, geographers, anthropologists, and modelers approach their science.
This book is the outcome of the work of contributors who participated in the wo- shop "Mapping Different Geographies (MDG)" in February 2010, held in Puchberg am Schneeberg, Austria. This meeting brought together cartographers, artists and geoscientists who research and practice in applications that focus on enhancing o- to-one communication or develop and evaluate methodologies that provide inno- tive methods for sharing information. The main intention of the workshop was to investigate how 'different' geographies are being mapped and the possibilities for developing new theories and techniques for information design and transfer based on place or location. So as to communicate these concepts it was important to appreciate the many contrasting meanings of 'mapping' that were held by workshop participants. Also, the many (and varied) viewpoints of what different geographies are, were ela- rated upon and discussed. Therefore, as the focus on space and time was embedded within everyone's felds of investigation, this was addressed during the workshop. This resulted in very engaging discourse, which, in some cases, exposed the restrictions that certain approaches need to consider. For participants, this proved to be most useful, as this allowed them to appreciate the limits and restrictions of their own approach to understanding and representing different geographies. As well, the workshop also was most helpful as a vehicle for demonstrating the common ground of interest held by the very diverse areas of endeavour that the workshop participants work within.
Unmanned Aircraft Systems (UASs) are a rapidly evolving technology with an expanding array of diverse applications. In response to the continuing evolution of this technology, this book discusses UAVs and similar systems, platforms, and sensors, as well as exploring some of their environmental applications. It explains how they can be used for mapping, monitoring, and modelling a wide variety of different environmental aspects and, at the same time, addresses some of the current constraints placed on realising the potential use of the technology, such as flight duration and distance, safety, and the invasion of privacy. Unmanned Aerial Remote Sensing: UAS for Environmental Applications is an excellent resource for any practitioner utilising remote sensing and other geospatial technologies for environmental applications, such as conservation, research, and planning. Students and academics in information science, environment and natural resources, geosciences, and geography will likewise find this comprehensive book a useful and informative resource. Features Provides necessary theoretical foundations for pertinent subject matter areas Introduces the role and value of UAVs for geographical data acquisition and the ways to acquire and process the data Provides a synthesis of ongoing research and a focus on the use of technology for small-scale image and spatial data acquisition in an environmental context Written by experts of the technology who bring together UAS tools and resources for environmental specialists.
Sixty years after its birth, Synthetic Aperture Radar (SAR) evolved as a key player of earth observation, and it is continually upgraded by enhanced hardware functionality and improved overall performance in response to user requirements. The basic information gained by SAR includes the backscattering coefficient of targets, their phases (the truncated distance between SAR and its targets), and their polarization dependence. The spatiotemporal combination of the multiple data operated on the satellite or aircraft significantly increases its sensitivity to detect changes on earth, including temporal variations of the planet in amplitude and the interferometric change for monitoring disasters; deformations caused by earthquakes, volcanic activity, and landslides; environmental changes; ship detection; and so on. Earth-orbiting satellites with the appropriate sensors can detect environmental changes because of their large spatial coverage and availability. Imaging from Spaceborne and Airborne SARs, Calibration, and Applications provides A-to-Z information regarding SAR researches through 15 chapters that focus on the JAXA L-band SAR, including hardware description, principles of SAR imaging, theoretical description of SAR imaging and error, ScanSAR imaging, polarimetric calibration, inflight antenna pattern, SAR geometry and ortho rectification, SAR calibration, defocusing for moving targets, large-scale SAR imaging and mosaic, interferometric SAR processing, irregularities, application, and forest estimation. Sample data are created by using L-band SAR, JERS-1, PALSAR, PALSAR-2, and Pi-SAR-L2. This book is based on the author's experience as a principal researcher at JAXA with responsibilities for L-band SAR operation and researches. It reveals the inside of SAR processing and application researches performed at JAXA, which makes this book a valuable reference for a wide range of SAR researchers, professionals, and students.
Today, remote sensing technology is an essential tool for understanding the Earth and managing human-Earth interactions. There is a rapidly growing need for remote sensing and Earth observation technology that enables monitoring of world's natural resources and environments, managing exposure to natural and man-made risks and more frequently occurring disasters, and helping the sustainability and productivity of natural and human ecosystems. The improvement in temporal resolution/revisit allows for the large accumulation of images for a specific location, creating a possibility for time series image analysis and eventual real-time assessments of scene dynamics. As an authoritative text, Remote Sensing Time Series Image Processing brings together active and recognized authors in the field of time series image analysis and presents to the readers the current state of knowledge and its future directions. Divided into three parts, the first addresses methods and techniques for generating time series image datasets. In particular, it provides guidance on the selection of cloud and cloud shadow detection algorithms for various applications. Part II examines feature development and information extraction methods for time series imagery. It presents some key remote sensing-based metrics, and their major applications in ecosystems and climate change studies. Part III illustrates various applications of time series image processing in land cover change, disturbance attribution, vegetation dynamics, and urbanization. This book is intended for researchers, practitioners, and students in both remote sensing and imaging science. It can be used as a textbook by undergraduate and graduate students majoring in remote sensing, imaging science, civil and electrical engineering, geography, geosciences, planning, environmental science, land use, energy, and GIS, and as a reference book by practitioners and professionals in the government, commercial, and industrial sectors.
Data science has recently gained much attention for a number of reasons, and among them is Big Data. Scientists (from almost all disciplines including physics, chemistry, biology, sociology, among others) and engineers (from all fields including civil, environmental, chemical, mechanical, among others) are faced with challenges posed by data volume, variety, and velocity, or Big Data. This book is designed to highlight the unique characteristics of geospatial data, demonstrate the need to different approaches and techniques for obtaining new knowledge from raw geospatial data, and present select state-of-the-art geospatial data science techniques and how they are applied to various geoscience problems.
Spatial dimensions need to be properly captured if modeling and engineering techniques are to be successfully applied in addressing environmental problems. The links between the geographical information systems (GIS) that capture this data, simulation modeling, and engineering offer tremendous possibilities for building versatile support systems for managing the environment. GIS, Environmental Modeling and Engineering focuses on using GIS and external models to solve real environmental problems, promoting the critical thinking needed for the effective applications of these systems and their analytical outputs. Divided into three major sections, this textbook first concentrates on defining GIS, identifying how data is structured, and explaining common functionality. The text examines GIS from a technological perspective, exploring the evolution of its scientific basis and its synergies with other technologies within a geocomputational paradigm. The next section explores modeling from a neutral scientific perspective in its role of simulating phenomena, as well as from a more specific perspective in its role within environmental science and engineering. The third and largest section looks at how GIS and simulation modeling are joined. It provides case studies and covers issues such as interoperability, data quality, model validity, space-time dynamics, and decision-support systems. This volume provides seniors and postgraduate students with a structured, coherent text that goes beyond introductory subject matter by enabling readers to think critically about the data acquisition process and the results they get from the technology.
Commuting, the daily link between residences and workplaces, sets up the complex interaction between the two most important land uses (residential and employment) in a city, and dictates the configuration of urban structure. In addition to prolonged time and stress for individual commuters on traffic, commuting comes with additional societal costs including elevated crash risks, worsening air quality, and louder traffic noise, etc. These issues are important to city planners, policy researchers, and decision makers. GIS-Based Simulation and Analysis of Intra-Urban Commuting, presents GIS-based simulation, optimization and statistical approaches to measure, map, analyze, and explain commuting patterns including commuting length and efficiency. Several GIS-automated easy-to-use tools will be available, along with sample data, for readers to download and apply to their own studies. This book recognizes that reporting errors from survey data and use of aggregated zonal data are two sources of bias in estimation of wasteful commuting, it studies the temporal trend of intraurban commuting pattern based on the most recent period newly-available 2006-2010, and it focuses on commuting, and especially wasteful commuting within US cities. It includes ready-to-download GIS-based simulation tools and sample data, and an explanation of optimization and statistical techniques of how to measure commuting, as well as presenting a methodology that can be applicable to other studies. This book is an invaluable resource for students, researchers, and practitioners in geography, urban planning, public policy, transportation engineering, and other related disciplines.
Human factors play a critical role in the design and interpretation of remotely sensed imagery for all Earth sciences. Remote Sensing and Cognition: Human Factors in Image Interpretation brings together current topics widely recognized and addressed regarding human cognition in geographic imagery, especially remote sensing imagery with complex data. It addresses themes around expertise including methods for knowledge elicitation and modeling of expertise, the effects of different aspects of realism on the interpretation of the environment, spatial learning using imagery, the effect of visual perspective on interpretation, and a variety of technologies and methods for utilizing knowledge in the analysis of remote sensing imagery. Written by leaders in the field, this book provides answers to the host of questions raised at the nexus of psychology and remote sensing. Academics and researchers with an interest in the human issues surrounding the use of remote sensing data will find this book to be an invaluable resource. The topics covered in this book are useful for both the scientific analysis of remote sensing imagery as well as the design and display of remote sensing imagery to facilitate a variety of other tasks including education and wayfinding. Features Brings together remote sensing, environmental, and computer scientists discussing their work from a psychological or human factors perspective Answers questions related to aesthetics of scientific visualization and mathematical analysis of perceptible objects Explains the perception and interpretation of realistic representations Provides illustrative real-world examples Shows how the features of display symbols, elements, and patterns have clear effects on processes of perception and visual search |
![]() ![]() You may like...
Grammar, Reading and Maths Year 1
Paul Hollin, Helen Betts, …
Paperback
Antimicrobial Peptides and Innate…
Pieter S. Hiemstra, Sebastian A.J. Zaat
Hardcover
|