![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Chaos theory
This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much broader class of inhomogeneous dynamical systems. In addition, the results on global stability and selection mechanisms of pattern formation will be of particular interest to researchers working on material processing and crystal growth. The stability mechanisms of a curved front and the pattern formation have been fundamental subjects in the areas of condensed-matter physics, materials science, crystal growth, and fluid mechanics for some time now. This book offers a stimulating and insightful introduction for all physicists, engineers and applied mathematicians working in the fields of soft condensed-matter physics, materials science, mechanical and chemical engineering, fluid dynamics, and nonlinear sciences.
This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers-including municipal politicians, spatial planners, and citizen groups-in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches-and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Agent-based Modeling; - The introduction of a participatory approach involving citizens, in order to utilize an Agent-based Modeling approach to simulate urban-growth scenarios; - A presentation of semantic modeling to enable a flexible application of modeling methods and a flexible exchange of data; - An article about a nested-systems approach to analyzing a city's interdependent subsystems (according to these subsystems' different velocities of change); - An article about methods that use Luhmann's system theory to characterize cities as systems that are composed of flows; - An article that demonstrates how the Sen-Nussbaum Capabilities Approach can be used in urban systems to measure household well-being shifts that occur in response to the resettlement of urban households; - A final article that illustrates how Adaptive Cycles of Complex Adaptive Systems, as well as innovation, can be applied to gain a better understanding of cities and to promote more resilient and more sustainable urban futures.
This book on advanced optoisolation circuits for nonlinearity applications in engineering addresses two separate engineering and scientific areas, and presents advanced analysis methods for optoisolation circuits that cover a broad range of engineering applications. The book analyzes optoisolation circuits as linear and nonlinear dynamical systems and their limit cycles, bifurcation, and limit cycle stability by using Floquet theory. Further, it discusses a broad range of bifurcations related to optoisolation systems: cusp-catastrophe, Bautin bifurcation, Andronov-Hopf bifurcation, Bogdanov-Takens (BT) bifurcation, fold Hopf bifurcation, Hopf-Hopf bifurcation, Torus bifurcation (Neimark-Sacker bifurcation), and Saddle-loop or Homoclinic bifurcation. Floquet theory helps as to analyze advance optoisolation systems. Floquet theory is the study of the stability of linear periodic systems in continuous time. Another way to describe Floquet theory, it is the study of linear systems of differential equations with periodic coefficients. The optoisolation system displays a rich variety of dynamical behaviors including simple oscillations, quasi-periodicity, bi-stability between periodic states, complex periodic oscillations (including the mixed-mode type), and chaos. The route to chaos in this optoisolation system involves a torus attractor which becomes destabilized and breaks up into a fractal object, a strange attractor. The book is unique in its emphasis on practical and innovative engineering applications. These include optocouplers in a variety of topological structures, passive components, conservative elements, dissipative elements, active devices, etc. In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advanced levels and closely integrated with mathematical theory. The book is primarily intended for newcomers to linear and nonlinear dynamics and advanced optoisolation circuits, as well as electrical and electronic engineers, students and researchers in physics who read the first book "Optoisolation Circuits Nonlinearity Applications in Engineering". It is ideally suited for engineers who have had no formal instruction in nonlinear dynamics, but who now desire to bridge the gap between innovative optoisolation circuits and advanced mathematical analysis methods.
The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems.The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis in particular, and in complex systems in general.
In this thesis, the author investigates the biophysical basis of the local field potential (LFP) as a way of gaining a better understanding of its underlying physiological mechanisms. The results represent major advances in our understanding and interpretation of LFPs and brain oscillations. They highlight the importance of using suitable experimental and analytical methods to explore the activity of brain circuits and point to the LFP as a useful, but complex variable for this purpose.
The central theme of this book is the extent to which the structure of the free dynamical boundaries of a system controls the evolution of the system as a whole. Applying three orthogonal types of thinking - mathematical, constructivist and morphological, it illustrates these concepts using applications to selected problems from the social and life sciences, as well as economics. In a broader context, it introduces and reviews some modern mathematical approaches to the science of complex systems. Standard modeling approaches (based on non-linear differential equations, dynamic systems, graph theory, cellular automata, stochastic processes, or information theory) are suitable for studying local problems. However they cannot simultaneously take into account all the different facets and phenomena of a complex system, and new approaches are required to solve the challenging problem of correlations between phenomena at different levels and hierarchies, their self-organization and memory-evolutive aspects, the growth of additional structures and are ultimately required to explain why and how such complex systems can display both robustness and flexibility. This graduate-level text also addresses a broader interdisciplinary audience, keeping the mathematical level essentially uniform throughout the book, and involving only basic elements from calculus, algebra, geometry and systems theory.
This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.
This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or with theories of emergence, will be guided through the development of a theory of emergent nested systems. The reader will also learn about new ways to influence the course of events - even though the course of events is, in principle, unpredictable, due to the ever-new emergence of real novelty.
With contributions from a number of pioneering researchers in the field, this collection is aimed not only at researchers and scientists in nonlinear dynamics but also at a broader audience interested in understanding and exploring how modern chaos theory has developed since the days of Poincare. This book was motivated by and is an outcome of the CHAOS 2015 meeting held at the Henri Poincare Institute in Paris, which provided a perfect opportunity to gain inspiration and discuss new perspectives on the history, development and modern aspects of chaos theory. Henri Poincare is remembered as a great mind in mathematics, physics and astronomy. His works, well beyond their rigorous mathematical and analytical style, are known for their deep insights into science and research in general, and the philosophy of science in particular. The Poincare conjecture (only proved in 2006) along with his work on the three-body problem are considered to be the foundation of modern chaos theory.
This book brings together 12 chapters on a new stream of research examining complex phenomena in nonlinear systems-including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
The book presents the lectures delivered during a short course held at Urbino University in summer 2015 on qualitative theory of dynamical systems, included in the activities of the COST Action IS1104 "The EU in the new economic complex geography: models, tools and policy evaluation". It provides a basic introduction to dynamical systems and optimal control both in continuous and discrete time, as well as some numerical methods and applications in economic modelling. Economic and social systems are intrinsically dynamic, characterized by interdependence, nonlinearity and complexity, and these features can only be approached using a qualitative analysis based on the study of invariant sets (equilibrium points, limit cycles and more complex attractors, together with the boundaries of their basins of attraction), which requires a trade-off between analytical, geometrical and numerical methods. Even though the early steps of the qualitative theory of dynamical systems have been in continuous time models, in economic and social modelling discrete time is often used to describe event-driven (often decision-driven) evolving systems. The book is written for Ph.D. and master's students, post-doctoral fellows, and researchers in economics or sociology, and it only assumes a basic knowledge of calculus. However it also suggests some more advanced topics.
Chaos is the idea that a system will produce very different long-term behaviors when the initial conditions are perturbed only slightly. Chaos is used for novel, time- or energy-critical interdisciplinary applications. Examples include high-performance circuits and devices, liquid mixing, chemical reactions, biological systems, crisis management, secure information processing, and critical decision-making in politics, economics, as well as military applications, etc. This book presents the latest investigations in the theory of chaotic systems and their dynamics. The book covers some theoretical aspects of the subject arising in the study of both discrete and continuous-time chaotic dynamical systems. This book presents the state-of-the-art of the more advanced studies of chaotic dynamical systems.
This volume collects the edited and reviewed contributions presented in the 6th iTi Conference in Bertinoro, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume has been produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. In the present book the contributions have been structured according to the topics : I Theory II Wall bounded flows III Particles in flows IV Free flows V Complex flows The volume is dedicated to the memory of Prof. Konrad Bajer who prematurely passed away in Warsaw on August 29, 2014.
This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying parameters in different sense of disturbances. The asynchronous switching problem, where there is time lag between the switching of the currently activated system mode and the controller/filter to be designed, is investigated in Chapter 6. The systems with various time delays under typical time-dependent switching signals are addressed in Chapter 7.
This book is devoted to Slime mould Physarum polycephalum, which is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralized actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices The book is a treatise of theoretical and experimental laboratory studies on sensing and computing properties of slime mould, and on the development of mathematical and logical theories of Physarum behavior. It is shown how to make logical gates and circuits, electronic devices (memristors, diodes, transistors, wires, chemical and tactile sensors) with the slime mould. The book demonstrates how to modify properties of Physarum computing circuits with functional nano-particles and polymers, to interface the slime mould with field-programmable arrays, and to use Physarum as a controller of microbial fuel cells. A unique multi-agent model of slime is shown to serve well as a software slime mould capable for solving problems of computational geometry and graph optimization. The multiagent model is complemented by cellular automata models with parallel accelerations. Presented mathematical models inspired by Physarum include non-quantum implementation of Shor's factorization, structural learning, computation of shortest path tree on dynamic graphs, supply chain network design, p-adic computing and syllogistic reasoning. The book is a unique composition of vibrant and lavishly illustrated essays which will inspire scientists, engineers and artists to exploit natural phenomena in designs of future and emergent computing and sensing devices. It is a 'bible' of experimental computing with spatially extended living substrates, it spanstopics from biology of slime mould, to bio-sensing, to unconventional computing devices and robotics, non-classical logics and music and arts.
This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to take on cellular automata as a tool of creativity and it persuades scientists to convert their research results into the works of art. The book is lavishly illustrated with visually attractive examples, presented in a lively and easily accessible manner.
This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting "micro-chain" including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the updating rule and governs the dynamics at a Markovian level, plays a crucial part in the analysis of "voter-like" models used in population genetics, evolutionary game theory and social dynamics. The book demonstrates that the problem of aggregation in ABMs - and the lumpability conditions in particular - can be embedded into a more general framework that employs information theory in order to identify different levels and relevant scales in complex dynamical systems
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of -mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
This book is primarily concerned with the computational aspects of predictability of dynamical systems - in particular those where observation, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, for instance in celestial mechanics, one is confronted with the observation and modeling of systems without the possibility of altering the key parameters of the objects studied. Therefore, the numerical simulations offer an essential tool for analyzing these systems. With the widespread use of computer simulations to solve complex dynamical systems, the reliability of the numerical calculations is of ever-increasing interest and importance. This reliability is directly related to the regularity and instability properties of the modeled flow. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerical implementation. This book introduces and explores precisely this link between the models and their predictability characterization based on concepts derived from the field of nonlinear dynamics, with a focus on the finite-time Lyapunov exponents approach. The method is illustrated using a number of well-known continuous dynamical systems, including the Contopoulos, Henon-Heiles and Roessler systems. To help students and newcomers quickly learn to apply these techniques, the appendix provides descriptions of the algorithms used throughout the text and details how to implement them in order to solve a given continuous dynamical system.
This book, the first English-language translation of Acoustique des instruments de musique, Second Edition, presents the necessary foundations for understanding the complex physical phenomena involved in musical instruments. What is the function of the labium in a flute? Which features of an instrument allow us to make a clear audible distinction between a clarinet and a trumpet? With the help of numerous examples, these questions are addressed in detail. The authors focus in particular on the significant results obtained in the field during the last fifteen years. Their goal is to show that elementary physical models can be used with benefit for various applications in sound synthesis, instrument making, and sound recording. The book is primarily addressed to graduate students and researchers; however it could also be of interest for engineers, musicians, craftsmen, and music lovers who wish to learn about the basics of musical acoustics.
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamics or biological sequence analysis. The technical material is illustrated by the use of worked examples and methods for training the algorithms are included. Dynamic Systems Models provides researchers in aerospatial engineering, bioinformatics and financial mathematics (as well as computer scientists interested in any of these fields) with a reliable and effective numerical method for nonlinear estimation and solving boundary problems when carrying out control design. It will also be of interest to academic researchers studying inverse problems and their solution.
This proceedings contains articles submitted to the fifth International Conference on Cognitive Neurodynamics (ICCN2015). In ICCN2015, twelve invited plenary lectures were presented by the leading scientists in their respective research fields. More than 15 mini-symposiums are organized by specialists with topics covering: motor control and learning, dynamic coding in distributed neural circuits, dynamics of firing patterns and synchronization in neuronal systems, information and signal processing techniques in neurotechnology, neural oscillations and synaptic plasticity in the hippocampus, new perspective on model-based vs. model-free brain process, neural mechanisms of internal switching, neuroinformation computation, neural model and dynamics, imaging human cognitive networks, neuroinformatics, neuroergonomics & neuroengineering, dynamic brain for communication, visual information processing and functional imaging and neural mechanisms of language processing. All articles are peer-reviewed. The ICCN is a series conference held every two years since 2007.
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems.
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application of structure-preserving methods is illustrated by a number of examples dealing with, among others, nonlinear beams and shells, large deformation problems, long-term simulations and coupled thermo-mechanical multibody systems. In addition it links novel time integration methods to frequently used methods in industrial multibody system simulation.
This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characterization will find the book to be an outstanding introduction. |
![]() ![]() You may like...
Complexity in Economics: Cutting Edge…
Marisa Faggini, Anna Parziale
Hardcover
R3,474
Discovery Miles 34 740
Chaos: Concepts, Control and…
Yurii Bolotin, Anatoli Tur, …
Hardcover
|