![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Chaos theory
Why did the stock market crash more than 500 points on a single Monday in 1987? Why do ancient species often remain stable in the fossil record for millions of years and then suddenly disappear? In a world where nice guys often finish last, why do humans value trust and cooperation? At first glance these questions don't appear to have anything in common, but in fact every one of these statements refers to a complex system. The science of complexity studies how single elements, such as a species or a stock, spontaneously organize into complicated structures like ecosystems and economies; stars become galaxies, and snowflakes avalanches almost as if these systems were obeying a hidden yearning for order. Drawing from diverse fields, scientific luminaries such as Nobel Laureates Murray Gell-Mann and Kenneth Arrow are studying complexity at a think tank called The Santa Fe Institute. The revolutionary new discoveries researchers have made there could change the face of every science from biology to cosmology to economics. M. Mitchell Waldrop's groundbreaking bestseller takes readers into the hearts and minds of these scientists to tell the story behind this scientific revolution as it unfolds.
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This unique book explores the definition, sources, and roles of robust chaos. The book is written in a reasonably self-contained manner and aims to provide students and researchers with the necessary understanding of the subject. Most of the known results, experiments, and conjectures about chaos in general and about robust chaos in particular are collected here in a pedagogical form. Many examples of dynamical systems, ranging from purely mathematical to natural and social processes displaying robust chaos, are discussed in detail. At the end of each chapter is a set of exercises and open problems (more than 260 in the whole book) intended to reinforce the ideas and provide additional experiences for both readers and researchers in nonlinear science in general, and chaos theory in particular.
The work done in chaotic modeling and simulation during the last decades has changed our views of the world around us and has introduced new scientific tools, methods and techniques. Advanced topics of these achievements are included in this volume on Chaos Theory which focuses on Chaotic Modeling, Simulation and Applications of the nonlinear phenomena. This volume includes the best papers presented in the 3rd International Conference on CHAOS. This interdisciplinary conference attracted people from many scientific fields dealing with chaos, nonlinear dynamics, fractals and the works presented and the papers included here are of particular interest that could provide a broad understanding of chaos in its various forms.The chapters relate to many fields of chaos including Dynamical and Nonlinear Systems, Attractors and Fractals, Hydro-Fluid Dynamics and Mechanics, Chaos in Meteorology and Cosmology, Chaos in Biology and Genetics, Chaotic Control, Chaos in Economy and Markets, and Computer Composition and Chaotic Simulations, including related applications.
This collection of review articles is devoted to new developments in the study of chaotic dynamical systems with some open problems and challenges. The papers, written by many of the leading experts in the field, cover both the experimental and theoretical aspects of the subject. This edited volume presents a variety of fascinating topics of current interest and problems arising in the study of both discrete and continuous time chaotic dynamical systems. Exciting new techniques stemming from the area of nonlinear dynamical systems theory are currently being developed to meet these challenges. Presenting the state-of-the-art of the more advanced studies of chaotic dynamical systems, Frontiers in the Study of Chaotic Dynamical Systems with Open Problems is devoted to setting an agenda for future research in this exciting and challenging field.
Memory is a universal function of organized matter. What is the mathematics of memory? How does memory affect the space-time behaviour of spatially extended systems? Does memory increase complexity? This book provides answers to these questions. It focuses on the study of spatially extended systems, i.e., cellular automata and other related discrete complex systems. Thus, arrays of locally connected finite state machines, or cells, update their states simultaneously, in discrete time, by the same transition rule. The classical dynamics in these systems is Markovian: only the actual configuration is taken into account to generate the next one. Generalizing the conventional view on spatially extended discrete dynamical systems evolution by allowing cells (or nodes) to be featured by some trait state computed as a function of its own previous state-values, the transition maps of the classical systems are kept unaltered, so that the effect of memory can be easily traced. The book demonstrates that discrete dynamical systems with memory are not only priceless tools for modeling natural phenomena but unique mathematical and aesthetic objects.
Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics.
This book (2nd edition) is a self-contained introduction to a wide body of knowledge on nonlinear dynamics and chaos. Manneville emphasises the understanding of basic concepts and the nontrivial character of nonlinear response, contrasting it with the intuitively simple linear response. He explains the theoretical framework using pedagogical examples from fluid dynamics, though prior knowledge of this field is not required. Heuristic arguments and worked examples replace most esoteric technicalities. Only basic understanding of mathematics and physics is required, at the level of what is currently known after one or two years of undergraduate training: elementary calculus, basic notions of linear algebra and ordinary differential calculus, and a few fundamental physical equations (specific complements are provided when necessary). Methods presented are of fully general use, which opens up ample windows on topics of contemporary interest. These include complex dynamical processes such as patterning, chaos control, mixing, and even the Earth's climate. Numerical simulations are proposed as a means to obtain deeper understanding of the intricacies induced by nonlinearities in our everyday environment, with hints on adapted modelling strategies and their implementation.
This book is based on research on the rigorous proof of chaos and bifurcations in 2-D quadratic maps, especially the invertible case such as the H non map, and in 3-D ODE's, especially piecewise linear systems such as the Chua's circuit. In addition, the book covers some recent works in the field of general 2-D quadratic maps, especially their classification into equivalence classes, and finding regions for chaos, hyperchaos, and non-chaos in the space of bifurcation parameters. Following the main introduction to the rigorous tools used to prove chaos and bifurcations in the two representative systems, is the study of the invertible case of the 2-D quadratic map, where previous works are oriented toward H non mapping. 2-D quadratic maps are then classified into 30 maps with well-known formulas. Two proofs on the regions for chaos, hyperchaos, and non-chaos in the space of the bifurcation parameters are presented using a technique based on the second-derivative test and bounds for Lyapunov exponents. Also included is the proof of chaos in the piecewise linear Chua's system using two methods, the first of which is based on the construction of Poincar map, and the second is based on a computer-assisted proof. Finally, a rigorous analysis is provided on the bifurcational phenomena in the piecewise linear Chua's system using both an analytical 2-D mapping and a 1-D approximated Poincar mapping in addition to other analytical methods.
The book is a compilation of selected papers from the conference on Physics and Control 2009, presenting a unified perspective underlying the thematics and strategies related to the control of physical systems with emerging applications in physics, engineering, chemistry, biology and other natural sciences. The selected papers reflect the state-of-the-art of the more advanced theoretical and practical studies in the field of control of complex systems. The contributions provide a comprehensive view on some selected topics of particular importance at the disciplinary borderline between Physics and Control.
This review volume consists an indispensable collection of research papers chronicling the recent progress in controlling chaos. Here, new theoretical ideas, as experimental implementations of controlling chaos, are included, while the applications contained in this volume can be referred to as turbulent magnetized plasmas, chaotic neural networks, modeling city traffic and models of interest in celestial mechanics.Recent Progress in Controlling Chaos provides an excellent broad overview of the subject matter, and will be especially useful for graduate students, researchers and scientists working in the areas of nonlinear dynamics, chaos and complex systems. The authors, world-renowned scientists and prominent experts in the field of controlling chaos, will offer readers through their research works, a fascinating insight into the state-of-the-art technology used in the progress in key techniques and concepts in the field of control.
Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. NeimarkSacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems.
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology.The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations.The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses.
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology.The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations.The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses.
This volume includes the best papers presented at the CHAOS 2008 International Conference on Chaotic Modeling, Simulation and Applications. It provides a valuable collection of new ideas, methods, and techniques in the field of nonlinear dynamics, chaos, fractals and their applications in general science and in engineering sciences. It touches on many fields such as chaos, dynamical systems, nonlinear systems, fractals and chaotic attractors. It also covers mechanics, hydrofluid dynamics, chaos in meteorology and cosmology, Hamiltonian and quantum chaos, chaos in biology and genetics, chaotic control, and chaos in economy and markets, and chaotic simulations; thus, containing cutting-edge interdisciplinary research with high-interest applications. These contributions present new solutions by analyzing the relevant data and through the use of recent advances in different fields, especially in chaotic simulation methods and techniques.
A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics. The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses. Features More extensive coverage of fractals, including objects like the Sierpinski carpet and others that appear as Julia sets in the later sections on complex dynamics, as well as an actual chaos "game." More detailed coverage of complex dynamical systems like the quadratic family and the exponential maps. New sections on other complex dynamical systems like rational maps. A number of new and expanded computer experiments for students to perform. About the Author Robert L. Devaney is currently professor of mathematics at Boston University. He received his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.
"Weatherall probes an epochal shift in financial strategizing with
lucidity, explaining how it occurred and what it means for modern
finance."--Peter Galison, author of "Einstein's Clocks, Poincare's
Maps"
Presents the newer field of chaos in nonlinear dynamics as a natural extension of classical mechanics as treated by differential equations. Employs Hamiltonian systems as the link between classical and nonlinear dynamics, emphasizing the concept of integrability. Also discusses nonintegrable dynamics, the fundamental KAM theorem, integrable partial differential equations, and soliton dynamics.
This book provides an introduction to the theory of chaotic systems and demonstrates how chaos and coherence are interwoven in some of the models exhibiting deterministic chaos. It is based on the lecture notes for a short course in dynamical systems theory given at the University of Oslo.
At the code level, discrete-time chaotic systems can be used to generate spreading codes for DS-SS systems. At the signal level, continuous-time chaotic systems can be used to generate wideband carriers for digital modulation schemes.
Why are people often so unpredictable? Why do they do things which can often cause great personal harm even whey they know this to be the case? This volume seeks to address these and many other enduring questions through a detailed discussion of the chaotic nature of human existence. It explores three general areas, the first of which is neurobiology and genetics. The evolution of the mind is examined from a Darwinian perspective, drawing attention to the way chance and uncertainty in development are structured by natural selection. Key findings from current biological and medical research are reviewed, the interrelationship between genetics and experience is explored, and Gerald Edelman's theory of the evolution of the mind through natural selection is discussed. The second theme, cognition and collective action, is considered in the light of evidence indicating that the way we think is also subject to natural selection. Furthermore, it is argued that there is a meaningful distinction between reason (adaptive rationality) and formal rationality. Finally, recent research into chaos theory, order and complexity is reviewed.
Why are people often so unpredictable? Why do they do things which can often cause great personal harm even whey they know this to be the case? This volume seeks to address these and many other enduring questions through a detailed discussion of the chaotic nature of human existence. It explores three general areas, the first of which is neurobiology and genetics. The evolution of the mind is examined from a Darwinian perspective, drawing attention to the way chance and uncertainty in development are structured by natural selection. Key findings from current biological and medical research are reviewed, the interrelationship between genetics and experience is explored, and Gerald Edelman's theory of the evolution of the mind through natural selection is discussed. The second theme, cognition and collective action, is considered in the light of evidence indicating that the way we think is also subject to natural selection. Furthermore, it is argued that there is a meaningful distinction between reason (adaptive rationality) and formal rationality. Finally, recent research into chaos theory, order and complexity is reviewed.
The basic procedures for designing and analysing electronic systems are based largely on the assumptions of linear behavior of the system. Nonlinearities inherent in all real applications very often cause unexpected and even strange behavior. This book presents an electronic engineer's perspective on chaos and complex behavior. It starts from basic mathematical notions which enable understanding of the observed phenomena, and guides the reader through the methodology and tools used in the laboratory and numerical experiments to interpretation and explanation of basic mechanisms. On typical circuit examples, it shows how the theoretical and empirical developments can be used in practice. Attention is drawn to applications of chaotic circuits as noise generators and the possible use of synchronized chaotic systems in information transmission and encryption. Chaos control is considered as a new, emerging area where electronic equipment and chaos theory could turn vital in biomedical and engineering issues.
The nature of this book is to emphasize the inherent complexity and richness of the human experience of change. Now, the author believes there to be an acceptable "scientific" explanation for this phenomona. Explored here are 30 years of studies to describe nonlinear dynamics, today termed either chaos theory or complexity theory. The connotations of both theories are discussed at length. Offering social scientists validation in their attempts to describe and define phenomona of a previously ineffable nature, this book explores chaos' implications for psychology and the social sciences. It describes the benefits psychology can glean from using ideas in chaos theory and applying them to psychology in general, individual psycho-therapy, couples therapy, and community psychology, and also considers possible directions for research and application.
The nature of this book is to emphasize the inherent complexity and richness of the human experience of change. Now, the author believes there to be an acceptable "scientific" explanation for this phenomona. Explored here are 30 years of studies to describe nonlinear dynamics, today termed either chaos theory or complexity theory. The connotations of both theories are discussed at length. Offering social scientists validation in their attempts to describe and define phenomona of a previously ineffable nature, this book explores chaos' implications for psychology and the social sciences. It describes the benefits psychology can glean from using ideas in chaos theory and applying them to psychology in general, individual psycho-therapy, couples therapy, and community psychology, and also considers possible directions for research and application.
Fractals and Chaos: An Illustrated Course provides you with a practical, elementary introduction to fractal geometry and chaotic dynamics-subjects that have attracted immense interest throughout the scientific and engineering disciplines. The book may be used in part or as a whole to form an introductory course in either or both subject areas. A prominent feature of the book is the use of many illustrations to convey the concepts required for comprehension of the subject. In addition, plenty of problems are provided to test understanding. Advanced mathematics is avoided in order to provide a concise treatment and speed the reader through the subject areas. The book can be used as a text for undergraduate courses or for self-study. |
You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Constructal Theory of Social Dynamics
Adrian Bejan, Gilbert W Merkx
Hardcover
R5,192
Discovery Miles 51 920
New York State in the 21st Century
Tim B. Heaton, Thomas A. Hirschl
Hardcover
|