Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
Systems biology came about as growing numbers of engineers and scientists from other fields created algorithms which supported the analysis of biological data in incredible quantities. Whereas biologists of the past had been forced to study one item or aspect at a time, due to technical and biological limitations, it suddenly became possible to study biological phenomena within their natural contexts. This interdisciplinary field offers a holistic approach to interpreting these processes, and has been responsible for some of the most important developments in the science of human health and environmental sustainability. This Very Short Introduction outlines the exciting processes and possibilities in the new field of systems biology. Eberhard O. Voit describes how it enabled us to learn how intricately the expression of every gene is controlled, how signaling systems keep organisms running smoothly, and how complicated even the simplest cells are. He explores what this field is about, why it is needed, and how it will affect our understanding of life, particularly in the areas of personalized medicine, drug development, food and energy production, and sustainable stewardship of our environments. Throughout he considers how new tools are being provided from the fields of mathematics, computer science, engineering, physics, and chemistry to grasp the complexity of the countless interacting processes in cells which would overwhelm the cognitive and analytical capabilities of the human mind. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Renewed interest in vector spaces and linear algebras has spurred the search for large algebraic structures composed of mathematical objects with special properties. Bringing together research that was otherwise scattered throughout the literature, Lineability: The Search for Linearity in Mathematics collects the main results on the conditions for the existence of large algebraic substructures. It investigates lineability issues in a variety of areas, including real and complex analysis. After presenting basic concepts about the existence of linear structures, the book discusses lineability properties of families of functions defined on a subset of the real line as well as the lineability of special families of holomorphic (or analytic) functions defined on some domain of the complex plane. It next focuses on spaces of sequences and spaces of integrable functions before covering the phenomenon of universality from an algebraic point of view. The authors then describe the linear structure of the set of zeros of a polynomial defined on a real or complex Banach space and explore specialized topics, such as the lineability of various families of vectors. The book concludes with an account of general techniques for discovering lineability in its diverse degrees.
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
Vast holdings and assessment of consumer data by large companies are not new phenomena. Firms' ability to leverage the data to reach customers in targeted campaigns and gain market share is, and on an unprecedented scale. Major companies have moved from serving as data or inventory storehouses, suppliers, and exchange mechanisms to monetizing their data and expanding the products they offer. Such changes have implications for both firms and consumers in the coming years. In Success with Big Data, Russell Walker investigates the use of internal Big Data to stimulate innovations for operational effectiveness, and the ways in which external Big Data is developed for gauging, or even prompting, customer buying decisions. Walker examines the nature of Big Data, the novel measures they create for market activity, and the payoffs they can offer from the connectedness of the business and social world. With case studies from Apple, Netflix, Google, and Amazon, Walker both explores the market transformations that are changing perceptions of Big Data, and provides a framework for assessing and evaluating Big Data. Although the world appears to be moving toward a marketplace where consumers will be able to "pull" offers from firms, rather than simply receiving offers, Walker observes that such changes will require careful consideration of legal and unspoken business practices as they affect consumer privacy. Rigorous and meticulous, Success with Big Data is a valuable resource for graduate students and professionals with an interest in Big Data, digital platforms, and analytics.
The idea of complex numbers dates back at least 300 years-to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers. This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications. Features: This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis This book has an exceptionally large number of examples and a large number of figures. The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking. Incisive applications appear throughout the book. Partial differential equations are used as a unifying theme.
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers-Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg-Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdos-Renyi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
Originally developed in 1966, Hilbert spaces have undergone intense investigation in the past few years. This book concerns a family of Hilbert spaces of holomorphic functions in the unit disk. Besides possessing a fascinating internal structure, they play a role in several basic problems in function theory. This book develops the basic structure of de Branges-Rovnyak spaces and some of these spaces' function-theoretic connections.
The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. The first part comprises the basic core of a course in complex analysis for junior and senior undergraduates. The second part includes various more specialized topics as the argument principle the Poisson integral, and the Riemann mapping theorem. The third part consists of a selection of topics designed to complete the coverage of all background necessary for passing Ph.D. qualifying exams in complex analysis.
This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problems will encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html
Since the early eighteenth century, the theory of networks and graphs has matured into an indispensable tool for describing countless real-world phenomena. However, the study of large-scale features of a network often requires unrealistic limits, such as taking the network size to infinity or assuming a continuum. These asymptotic and analytic approaches can significantly diverge from real or simulated networks when applied at the finite scales of real-world applications. This book offers an approach to overcoming these limitations by introducing operator graph theory, an exact, non-asymptotic set of tools combining graph theory with operator calculus. The book is intended for mathematicians, physicists, and other scientists interested in discrete finite systems and their graph-theoretical description, and in delineating the abstract algebraic structures that characterise such systems. All the necessary background on graph theory and operator calculus is included for readers to understand the potential applications of operator graph theory.
This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2( ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni -Krauthgamer -Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.
This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann-Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi-Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.
Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications. Alternate approaches, such as Fichera's proof of the Goursat Theorem and Estermann's proof of the Cauchy's Integral Theorem, are also presented for comparison. Discussions include holomorphic functions, the Weierstrass Convergence Theorem, analytic continuation, isolated singularities, homotopy, Residue theory, conformal mappings, special functions and boundary value problems. More than 200 examples and 150 exercises illustrate the subject matter and make this book an ideal text for university courses on complex analysis, while the comprehensive compilation of theories and succinct proofs make this an excellent volume for reference.
This book presents English translations of Michele Sce's most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality. This volume is dedicated to revealing and describing the framework Sce worked in, at an exciting time when the various generalizations of complex analysis in one variable were still in their infancy. In addition to faithfully translating Sce's papers, the authors discuss their significance and explain their connections to contemporary research in hypercomplex analysis. They also discuss many concrete examples that can serve as a basis for further research. The vast majority of the results presented here will be new to readers, allowing them to finally access the original sources with the benefit of comments from fellow mathematicians active in the field of hypercomplex analysis. As such, the book offers not only an important chapter in the history of hypercomplex analysis, but also a roadmap for further exciting research in the field.
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
This book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.
John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by leading researchers in the field and pay tribute to John's many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John's life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.
"...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews
This monograph establishes a theory of classification and translation closedness of time scales, a topic that was first studied by S. Hilger in 1988 to unify continuous and discrete analysis. The authors develop a theory of translation function on time scales that contains (piecewise) almost periodic functions, (piecewise) almost automorphic functions and their related generalization functions (e.g., pseudo almost periodic functions, weighted pseudo almost automorphic functions, and more). Against the background of dynamic equations, these function theories on time scales are applied to study the dynamical behavior of solutions for various types of dynamic equations on hybrid domains, including evolution equations, discontinuous equations and impulsive integro-differential equations. The theory presented allows many useful applications, such as in the Nicholson`s blowfiles model; the Lasota-Wazewska model; the Keynesian-Cross model; in those realistic dynamical models with a more complex hibrid domain, considered under different types of translation closedness of time scales; and in dynamic equations on mathematical models which cover neural networks. This book provides readers with the theoretical background necessary for accurate mathematical modeling in physics, chemical technology, population dynamics, biotechnology and economics, neural networks, and social sciences.
The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference's focus and the contents of the papers reflect Luigi's various research interests in the course of his long and extremely prolific career at Torino University.
This book aims to bring together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. This volume contains contributions presented at the 11th International Conference on Complex Networks (CompleNet) in Exeter, United Kingdom, 31 March - 3 April 2020. CompleNet is a venue for discussing ideas and findings about all types of networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson-Bernstein-Deligne-Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito's deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.
This book addresses the challenging topic of modeling adaptive networks, which often manifest inherently complex behavior. Networks by themselves can usually be modeled using a neat, declarative, and conceptually transparent Network-Oriented Modeling approach. In contrast, adaptive networks are networks that change their structure; for example, connections in Mental Networks usually change due to learning, while connections in Social Networks change due to various social dynamics. For adaptive networks, separate procedural specifications are often added for the adaptation process. Accordingly, modelers have to deal with a less transparent, hybrid specification, part of which is often more at a programming level than at a modeling level. This book presents an overall Network-Oriented Modeling approach that makes designing adaptive network models much easier, because the adaptation process, too, is modeled in a neat, declarative, and conceptually transparent Network-Oriented Modeling manner, like the network itself. Thanks to this approach, no procedural, algorithmic, or programming skills are needed to design complex adaptive network models. A dedicated software environment is available to run these adaptive network models from their high-level specifications. Moreover, because adaptive networks are described in a network format as well, the approach can simply be applied iteratively, so that higher-order adaptive networks in which network adaptation itself is adaptive (second-order adaptation), too can be modeled just as easily. For example, this can be applied to model metaplasticity in cognitive neuroscience, or second-order adaptation in biological and social contexts. The book illustrates the usefulness of this approach via numerous examples of complex (higher-order) adaptive network models for a wide variety of biological, mental, and social processes. The book is suitable for multidisciplinary Master's and Ph.D. students without assuming much prior knowledge, although also some elementary mathematical analysis is involved. Given the detailed information provided, it can be used as an introduction to Network-Oriented Modeling for adaptive networks. The material is ideally suited for teaching undergraduate and graduate students with multidisciplinary backgrounds or interests. Lecturers will find additional material such as slides, assignments, and software.
This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same individuals. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.
|
You may like...
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,891
Discovery Miles 18 910
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R896
Discovery Miles 8 960
|