Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Complex analysis
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras, numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.
This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject.
Spatial data analysis is a fast growing area and Voronoi diagrams provide a means of naturally partitioning space into subregions to facilitate spatial data manipulation, modelling of spatial structures, pattern recognition and locational optimization. With such versatility, the Voronoi diagram and its relative, the Delaunay triangulation, provide valuable tools for the analysis of spatial data. This is a rapidly growing research area and in this fully updated second edition the authors provide an up-to-date and comprehensive unification of all the previous literature on the subject of Voronoi diagrams. Features:&UL; &LI; Expands on the highly acclaimed first edition&LI; Provides an up-to-date and comprehensive survey of the existing literature on Voronoi diagrams&LI; Includes a useful compendium of applications&LI; Contains an extensive bibliography&/UL; The authors guide the reader through all the necessary mathematical background, before introducing a number of generalizations of Voronoi diagrams in Chapter 3. The subsequent chapters cover algorithms, random Voronoi diagrams, spatial interpolation, multivariate data manipulation, spatial process models, point pattern analysis and locational optimization. Emphasis of a particular perspective is deliberately avoided in order to provide a comprehensive and balanced treatment of the topic. A wide range of applications are discussed, enabling this book to serve as an important reference volume on the topic. The text will appeal to students and researchers studying spatial data in a number of areas, in particular applied probability, computational geometry and Geographic Information Science (GIS). This book will appeal equally to those whose interests in Voronoi diagrams are theoretical, practical or both.
This volume is a collection of surveys on function theory in euclidean n-dimensional spaces centered around the theme of quasiconformal space mappings. These surveys cover or are related to several topics including inequalities for conformal invariants and extremal length, distortion theorems, L(p)-theory of quasiconformal maps, nonlinear potential theory, variational calculus, value distribution theory of quasiregular maps, topological properties of discrete open mappings, the action of quasiconformal maps in special classes of domains, and global injectivity theorems. The present volume is the first collection of surveys on Quasiconformal Space Mappings since the origin of the theory in 1960 and this collection provides in compact form access to a wide spectrum of recent results due to well-known specialists. CONTENTS: G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen: Conformal invariants, quasiconformal maps and special functions.- F.W. Gehring: Topics in quasiconformal mappings.- T.Iwaniec: L(p)-theory of quasiregular mappings.- O. Martio: Partial differential equations and quasiregular mappings.- Yu.G. Reshetnyak: On functional classes invariant relative to homothetics.- S. Rickman: Picard's theorem and defect relation for quasiconformal mappings.- U. Srebro: Topological properties of quasiregular mappings.- J. V{is{l{: Domains and maps.- V.A. Zorich: The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems.
These are notes of lectures on Nevanlinna theory, in the classical case of meromorphic functions, and the generalization by Carlson-Griffith to equidimensional holomorphic maps using as domain space finite coverings of C resp. Cn. Conjecturally best possible error terms are obtained following a method of Ahlfors and Wong. This is especially significant when obtaining uniformity for the error term w.r.t. coverings, since the analytic yields case a strong version of Vojta's conjectures in the number-theoretic case involving the theory of heights. The counting function for the ramified locus in the analytic case is the analogue of the normalized logarithmetic discriminant in the number-theoretic case, and is seen to occur with the expected coefficient 1. The error terms are given involving an approximating function (type function) similar to the probabilistic type function of Khitchine in number theory. The leisurely exposition allows readers with no background in Nevanlinna Theory to approach some of the basic remaining problems around the error term. It may be used as a continuation of a graduate course in complex analysis, also leading into complex differential geometry.
The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.
The volume contains the texts of the main talks delivered at the International Symposium on Complex Geometry and Analysis held in Pisa, May 23-27, 1988. The Symposium was organized on the occasion of the sixtieth birthday of Edoardo Vesentini. The aim of the lectures was to describe the present situation, the recent developments and research trends for several relevant topics in the field. The contributions are by distinguished mathematicians who have actively collaborated with the mathematical school in Pisa over the past thirty years.
Before his untimely death in 1986, Alain Durand had undertaken a systematic and in-depth study of the arithmetic perspectives of polynomials. Four unpublished articles of his, formed the centerpiece of attention at a colloquium in Paris in 1988 and are reproduced in this volume together with 11 other papers on closely related topics. A detailed introduction by M. Langevin sets the scene and places these articles in a unified perspective.
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sense, up to the boundary. The peculiar properties of such a factorization are investigated for the most common classes of Lipschitz-like analytic functions. The book sets out to create a satisfactory factorization theory as exists for Hardy classes. The reader will find, among other things, the theorem on smoothness for the outer part of a function, the generalization of the theorem of V.P. Havin and F.A. Shamoyan also known in the mathematical lore as the unpublished Carleson-Jacobs theorem, the complete description of the zero-set of analytic functions continuous up to the boundary, generalizing the classical Carleson-Beurling theorem, and the structure of closed ideals in the new wide range of Banach algebras of analytic functions. The first three chapters assume the reader has taken a standard course on one complex variable; the fourth chapter requires supplementary papers cited there. The monograph addresses both final year students and doctoral students beginning to work in this area, and researchers who will find here new results, proofs and methods.
The purpose of this book is to study plurisubharmonic and analytic functions in n using capacity theory. The case n=l has been studied for a long time and is very well understood. The theory has been generalized to mn and the results are in many cases similar to the situation in . However, these results are not so well adapted to complex analysis in several variables - they are more related to harmonic than plurihar monic functions. Capacities can be thought of as a non-linear generali zation of measures; capacities are set functions and many of the capacities considered here can be obtained as envelopes of measures. In the mn theory, the link between functions and capa cities is often the Laplace operator - the corresponding link in the n theory is the complex Monge-Ampere operator. This operator is non-linear (it is n-linear) while the Laplace operator is linear. This explains why the theories in mn and n differ considerably. For example, the sum of two harmonic functions is harmonic, but it can happen that the sum of two plurisubharmonic functions has positive Monge-Ampere mass while each of the two functions has vanishing Monge-Ampere mass. To give an example of similarities and differences, consider the following statements. Assume first that is an open subset VIII of n and that K is a closed subset of Q. Consider the following properties that K mayor may not have."
The present volume contains articles pertaining to a wide variety of sub- jects such as conformal and quasi conformal mappings and related extremal problems, Riemann surfaces, meromorphic functions, subharmonic functions, approximation and interpolation, and other questions of complex analysis. These contributions by mathematicians from allover the world express con- sideration and friendship for Albert Pfluger. They reflect the wide range of his interests. Albert Pfluger was born on 13 October 1907 in Oensingen (Kanton Solothurn) as the oldest son of a Swiss farmer. After a classical education he studied Mathematics at the ETH-Zurich. Among his teachers were Hopf, Plancherel, P6lya and Saxer. P6lya was his Ph.D. adviser. After some teaching at high schools (Gymnasien), he became professor at the University of Fribourg, and a few years later (1943) he was appointed as successor of P6lya at the ETH. He retired in 1978, but has always remained very active in research. Pfluger's lectures were highly appreciated by the students. His vivid and clear teaching stimulated and challenged them to independent thinking. Many of his Ph.D. students are now themselves teaching in universities. His main research relates to the following fields: entire functions, Riemann surfaces, quasi conformal mappings, schlicht functions. (See list of publica- tions.) He collaborated with several mathematical colleagues, in particular with Rolf Nevanlinna, who taught parallel to him at the University of Zurich. In 1973 Pfluger was nominated foreign member of the Finnish Academy of Sciences.
The theory of General Relativity, after its invention by Albert Einstein, remained for many years a monument of mathemati cal speculation, striking in its ambition and its formal beauty, but quite separated from the main stream of modern Physics, which had centered, after the early twenties, on quantum mechanics and its applications. In the last ten or fifteen years, however, the situation has changed radically. First, a great deal of significant exper en tal data became available. Then important contributions were made to the incorporation of general relativity into the framework of quantum theory. Finally, in the last three years, exciting devel opments took place which have placed general relativity, and all the concepts behind it, at the center of our understanding of par ticle physics and quantum field theory. Firstly, this is due to the fact that general relativity is really the "original non-abe lian gauge theory," and that our description of quantum field in teractions makes extensive use of the concept of gauge invariance. Secondly, the ideas of supersymmetry have enabled theoreticians to combine gravity with other elementary particle interactions, and to construct what is perhaps the first approach to a more finite quantum theory of gravitation, which is known as super gravity."
In 1960 Wilhelm Stoll joined the University of Notre Dame faculty as Professor of Mathematics, and in October, 1984 the university acknowledged his many years of distinguished service by holding a conference in complex analysis in his honour. This volume is the proceedings of that conference. It was our priviledge to serve, along with Nancy K. Stanton, as conference organizers. We are grateful to the College of Science of the University of Notre Dame and to the National Science Foundation for their support. In the course of a career that has included the publication of over sixty research articles and the supervision of eighteen doctoral students, Wilhelm Stoll has won the affection and respect of his colleagues for his diligence, integrity and humaneness. The influence of his ideas and insights and the subsequent investigations they have inspired is attested to by several of the articles in the volume. On behalf of the conference partipants and contributors to this volume, we wish Wilhelm Stoll many more years of happy and devoted service to mathematics. Alan Howard Pit-Mann Wong VII III c: ... c: o U CI> .r. .... o e:: J o a:: a.:: J o ... (. : J VIII '" Q) g> a. '" Q) E z '" ..... o Q) E Q) ..c eX IX Participants on the Group Picture Qi-keng LU, Professor, Chinese Academy of Science, Peking, China.
In recent years there has been increasing interaction among various branches of mathematics. This is especially evident in the theory of several complex variables where fruitful interplays of the methods of algebraic geometry, differential geometry, and partial differential equations have led to unexpected insights and new directions of research. In China there has been a long tradition of study in complex analysis, differential geometry and differential equations as interrelated subjects due to the influence of Professors S. S. Chern and L. K. Hua. After a long period of isolation, in recent years there is a resurgence of scientific activity and a resumption of scientific exchange with other countries. The Hangzhou conference is the first international conference in several complex variables held in China. It offered a good opportunity for mathematicians from China, U.S., Germany, Japan, Canada, and France to meet and to discuss their work. The papers presented in the conference encompass all major aspects of several complex variables, in particular, in such areas as complex differential geometry, integral representation, boundary behavior of holomorphic functions, invariant metrics, holomorphic vector bundles, and pseudoconvexity. Most of the participants wrote up their talks for these proceedings. Some of the papers are surveys and the others present original results. This volume constitutes an overview of the current trends of research in several complex variables.
Intersection theory has played a prominent role in the study of closed symplectic 4-manifolds since Gromov's famous 1985 paper on pseudoholomorphic curves, leading to myriad beautiful rigidity results that are either inaccessible or not true in higher dimensions. Siefring's recent extension of the theory to punctured holomorphic curves allowed similarly important results for contact 3-manifolds and their symplectic fillings. Based on a series of lectures for graduate students in topology, this book begins with an overview of the closed case, and then proceeds to explain the essentials of Siefring's intersection theory and how to use it, and gives some sample applications in low-dimensional symplectic and contact topology. The appendices provide valuable information for researchers, including a concise reference guide on Siefring's theory and a self-contained proof of a weak version of the Micallef-White theorem.
This book provides a concise survey of the theory of zero product-determined algebras, which has been developed over the last 15 years. It is divided into three parts. The first part presents the purely algebraic branch of the theory, the second part presents the functional analytic branch, and the third part discusses various applications. The book is intended for researchers and graduate students in ring theory, Banach algebra theory, and nonassociative algebra.
Complex Variables and Applications, 9e will serve, just as the earlier editions did, as a textbook for an introductory course in the theory and application of functions of a complex variable. This new edition preserves the basic content and style of the earlier editions. The text is designed to develop the theory that is prominent in applications of the subject. You will find a special emphasis given to the application of residues and conformal mappings. To accommodate the different calculus backgrounds of students, footnotes are given with references to other texts that contain proofs and discussions of the more delicate results in advanced calculus. Improvements in the text include extended explanations of theorems, greater detail in arguments, and the separation of topics into their own sections.
This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in TOM M. ApOSTOL'S Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], or WALTER RUDIN'S Principles of Mathe nd matical Analysis [2 Ed., McGraw-Hill Book Co., New York, 1964].
|
You may like...
Hardy Inequalities on Homogeneous Groups
Durvudkhan Suragan, Michael Ruzhansky
Hardcover
R1,891
Discovery Miles 18 910
Annual Report of the Commissioner of…
Uni States Office of Indian Affairs
Hardcover
R896
Discovery Miles 8 960
Elements of the Infinitesimal Calculus…
James Gregory 1837-1924 Clark
Hardcover
R989
Discovery Miles 9 890
|