![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Data structures
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers and case studies related to all the areas of data mining, machine learning, Internet of things (IoT) and information security.
This book is an attempt to bring value to the enterprise pursuits in the areas of research and innovation around the specific issues in terms of topic selection, open data resources and researcher orientation. Over the last 300 years, industrial revolutions have had game-changing impact on societies. Presently, by and large, we are at the crossroads of the fourth industrial revolution, where phygital systems are going to play a massive role, where digital systems can simulate and go beyond the limitations of the physical world, thereby enabling a new world order. This transformation is cutting across every sphere known to mankind. The world will become a globally localized marketplace. In today's business world, sustainability is a corporate agenda. Enterprises are also aiming to be purpose-driven, adaptive and resilient to disruptions. The contributions to community and environment are part of their corporate branding. The book explores and presents a part of the open data sets from government institutions to achieve the sustainable goals at local level, in turn contributing towards global mission. As the topic suggests, the authors are looking at some of the specific issues in the areas of environment, agriculture and health care through the lens of data science. The authors believe that the above three areas chosen have deep relevance in today's world. The intent is to explore these issues from a data and analytics perspective and identify cracks through which deeper inroads can be made. Conscious efforts have been taken to make use of all the major data science techniques like prediction, classification, clustering, and correlation. Given the above background, deeper waters will be explored through the contents of this book.
Solving complex optimization problems with parallel metaheuristics
This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The currentbook bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint."
This book discusses all the major nature-inspired algorithms with a focus on their application in the context of solving navigation and routing problems. It also reviews the approximation methods and recent nature-inspired approaches for practical navigation, and compares these methods with traditional algorithms to validate the approach for the case studies discussed. Further, it examines the design of alternative solutions using nature-inspired techniques, and explores the challenges of navigation and routing problems and nature-inspired metaheuristic approaches.
This book constitutes revised selected papers from the Third International Conference on Information and Communication Technology and Applications, ICTA 2020, held in Minna, Nigeria, in November 2020. Due to the COVID-19 pandemic the conference was held online. The 67 full papers were carefully reviewed and selected from 234 submissions. The papers are organized in the topical sections on Artificial Intelligence, Big Data and Machine Learning; Information Security Privacy and Trust; Information Science and Technology.
The book is a concise, self-contained and fully updated introduction to automata theory - a fundamental topic of computer sciences and engineering. The material is presented in a rigorous yet convincing way and is supplied with a wealth of examples, exercises and down-to-the earth convincing explanatory notes. An ideal text to a spectrum of one-term courses in computer sciences, both at the senior undergraduate and graduate students.
This monograph provides a comprehensive overview of methods for searching, evaluating, and optimizing highway location and alignments using genetic algorithms (GAs), a powerful Artificial Intelligence (AI) technique. It presents a two-level programming structure to deal with the effects of varying highway location on traffic level changes in surrounding road networks within the highway location search and alignment optimization process. In addition, the proposed method evaluates environmental impacts as well as all relevant highway costs associated with its construction, operation, and maintenance. The monograph first covers various search methods, relevant cost functions, constraints, computational efficiency, and solution quality issues arising from optimizing the highway alignment optimization (HAO) problem. It then focuses on applications of a special-purpose GA in the HAO problem where numerous highway alignments are generated and evaluated, and finally the best ones are selected based on costs, traffic impacts, safety, energy, and environmental considerations. A review of other promising optimization methods for the HAO problem is also provided in this monograph.
This proceedings constitutes the refereed proceedings of the 15th EAI International Conference on Communications and Networking, ChinaCom 2020, held in November 2020 in Shanghai, China. Due to COVID-19 pandemic the conference was held virtually. The 54 papers presented were carefully selected from 143 submissions. The papers are organized in topical sections on Transmission Optimization in Edge Computing; Performance and Scheduling Optimization in Edge Computing; Mobile Edge Network System; Communication Routing and Control; Transmission and Load Balancing; Edge Computing and Distributed Machine Learning; Deep Learning.
This two-volume set LNICST 357-358 constitutes the post-conference proceedings of the 11th EAI International Conference on Wireless and Satellite Services, WiSATS 2020, held in Nanjing, China, in September 2020. The 91 full papers and workshop papers were carefully reviewed and selected from 200 submissions. Part I - LNICST 357 - details original research and results of wireless and satellite technology for a smarter global communication architecture. The theme of WISATS 2020 is "Intelligent Wireless and Satellite Communications for Beyond 5G". Part II - LNICST 358 - presents 6 workshop papers: High Speed Space Communication and Space Information Networks (HSSCSIN); Integrated Space and Onboard Networks (ISON); Intelligent Satellite Operations, Managements, and Applications (ISOMA); Intelligent Satellites in Future Space Networked System (ISFSNS); Satellite Communications, Networking and Applications (SCNA); Satellite Internet of Things; Trusted Data Sharing, Secure Communication (SIOTTDSSC).
Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks. The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning. Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office. What You Will Learn Take advantage of the built-in support of the Google Colab ecosystem Work with TensorFlow data sets Create input pipelines to feed state-of-the-art deep learning models Create pipelined state-of-the-art deep learning models with clean and reliable Python code Leverage pre-trained deep learning models to solve complex machine learning tasks Create a simple environment to teach an intelligent agent to make automated decisions Who This Book Is For Readers who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab
Do you have creative ideas that you wish you could transform into code? Do you want to boost your problem solving and logic skills? Do you want to enhance your career by adopting an algorithmic mindset? In our increasingly digital world, coding is an essential skill. Communicating an algorithm to a machine to perform a set of tasks is vital. Beginner's Guide to Code Algorithms: Experiments to Enhance Productivity and Solve Problems written by Deepankar Maitra teaches you how to think like a programmer. The author unravels the secret behind writing code - building a good algorithm. Algorithmic thinking leads to asking the right question and enables a shift from issue resolution to value creation. Having this mindset will make you more marketable to employers. This book takes you on a problem-solving journey to expand your mind and increase your willingness to experiment with code. You will: Learn the art of building an algorithm through hands-on exercises Understand how to develop code for inspiring productivity concepts Build a mentality of developing algorithms to solve problems Develop, test, review, and improve code through guided experimentation This book is designed to develop a culture of logical thinking through intellectual stimulation. It will benefit students and teachers of programming, business professionals, as well as experienced users of Microsoft Excel who wish to become proficient with macros.
Artificial Intelligence is a seemingly neutral technology, but it is increasingly used to manage workforces and make decisions to hire and fire employees. Its proliferation in the workplace gives the impression of a fairer, more efficient system of management. A machine can't discriminate, after all. Augmented Exploitation explores the reality of the impact of AI on workers' lives. While the consensus is that AI is a completely new way of managing a workplace, the authors show that, on the contrary, AI is used as most technologies are used under capitalism: as a smokescreen that hides the deep exploitation of workers. Going beyond platform work and the gig economy, the authors explore emerging forms of algorithmic governance and AI-augmented apps that have been developed to utilise innovative ways to collect data about workers and consumers, as well as to keep wages and worker representation under control. They also show that workers are not taking this lying down, providing case studies of new and exciting form of resistance that are springing up across the globe.
This two-volume set constitutes the post-conference proceedings of the 4th EAI International Conference on Advanced Hybrid Information Processing, ADHIP 2020, held in Binzhou, China, in September 2020. Due to COVID-19 the conference was held virtually. The 89 papers presented were selected from 190 submissions and focus on theory and application of hybrid information processing technology for smarter and more effective research and application. The theme of ADHIP 2020 was "Industrial applications of aspects with big data". The papers are named in topical sections as follows: Industrial application of multi-modal information processing; Industrialized big data processing; Industrial automation and intelligent control; Visual information processing.
This two-volume book constitutes the post-conference proceedings of the 5th International Conference on Advances in Computing and Data Sciences, ICACDS 2021, held in Nashik, India, in April 2021.* The 103 full papers were carefully reviewed and selected from 781 submissions. The papers in Part I and II are centered around topics like distributed systems organizing principles, development frameworks and environments, software verification and validation, computational complexity and cryptography, machine learning theory, database theory, probabilistic representations database management system engines, data mining, information retrieval query processing, database and storage security, ubiquitous and mobile computing, parallel computing methodologies, and others. *The conference was held virtually due to the COVID-19 pandemic.
This book constitutes refereed proceedings of the 20th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2021, held in Irkutsk, Russia, in July 2021. Due to the COVID-19 pandemic the conference was held online. The 31 full papers and 3 short papers presented in this volume were carefully reviewed and selected from a total of 102 submissions. The papers in the volume are organised according to the following topical headings: continuous optimization; integer programming and combinatorial optimization; operational research applications; optimal control.
This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.
This book constitutes the refereed proceedings of the 16th International Conference on Integrated Formal Methods, IFM 2019, held in Lugano, Switzerland, in November 2020. The 24 full papers and 2 short papers were carefully reviewed and selected from 63 submissions. The papers cover a broad spectrum of topics: Integrating Machine Learning and Formal Modelling; Modelling and Verification in B and Event-B; Program Analysis and Testing; Verification of Interactive Behaviour; Formal Verification; Static Analysis; Domain-Specific Approaches; and Algebraic Techniques.
This book focuses on the implementation, evaluation and application of DNA/RNA-based genetic algorithms in connection with neural network modeling, fuzzy control, the Q-learning algorithm and CNN deep learning classifier. It presents several DNA/RNA-based genetic algorithms and their modifications, which are tested using benchmarks, as well as detailed information on the implementation steps and program code. In addition to single-objective optimization, here genetic algorithms are also used to solve multi-objective optimization for neural network modeling, fuzzy control, model predictive control and PID control. In closing, new topics such as Q-learning and CNN are introduced. The book offers a valuable reference guide for researchers and designers in system modeling and control, and for senior undergraduate and graduate students at colleges and universities.
This volume LNCS 12925 constitutes the papers of the 23rd International Conference on Big Data Analytics and Knowledge Discovery, held in September 2021. Due to COVID-19 pandemic it was held virtually. The 12 full papers presented together with 15 short papers in this volume were carefully reviewed and selected from a total of 71 submissions. The papers reflect a wide range of topics in the field of data integration, data warehousing, data analytics, and recently big data analytics, in a broad sense. The main objectives of this event are to explore, disseminate, and exchange knowledge in these fields.
This book features research presented and discussed during the Research & Innovation Forum (Rii Forum) 2019. As such, this volume offers a unique insight into emerging topics, issues and developments pertinent to the fields of technology, innovation and education and their social impact. Papers included in this volume apply inter- and multi-disciplinary approaches to query such issues as technology-enhanced teaching and learning, smart cities,, information systems, cognitive computing and social networking. What brings these threads of the discussion together is the question of how advances in computer science - which are otherwise largely incomprehensible to researchers from other fields - can be effectively translated and capitalized on so as to make them beneficial for society as a whole. In this context, Rii Forum and Rii Forum proceedings offer an essential venue where diverse stakeholders, including academics, the think tank sector and decision-makers, can engage in a meaningful dialogue with a view to improving the applicability of advances in computer science. In brief, Rii Forum takes the imperative inherent in the 4th industrial revolution seriously, in that it identifies ways of making technology usable and therefore inclusive.
This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.
This book constitutes the proceedings of the 16th International Conference on Web and Internet Economics, WINE 2020, held in Beijing, China, in December 2020. The 31 full papers presented together with 11 abstracts were carefully reviewed and selected from 136 submissions. The issues in theoretical computer science, artificial intelligence, operations research are of particular importance in the Web and the Internet that enable the interaction of large and diverse populations. The Conference on Web and Internet Economics (WINE) is an interdisciplinary forum for the exchange of ideas and results on incentives and computation arising from these various fields.
Genetic Programming Theory and Practice VI was developed from the sixth workshop at the University of Michigan s Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the foremost international researchers and practitioners in the GP arena examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. These contributions address several significant interdependent themes which emerged from this year s workshop, including: (1) Making efficient and effective use of test data. (2) Sustaining the long-term evolvability of our GP systems. (3) Exploiting discovered subsolutions for reuse. (4) Increasing the role of a Domain Expert." |
![]() ![]() You may like...
Data Abstraction and Problem Solving…
Janet Prichard, Frank Carrano
Paperback
R2,421
Discovery Miles 24 210
Python Programming for Computations…
Computer Language
Hardcover
|