![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General theory of computing > Data structures
Solving complex optimization problems with parallel metaheuristics
Anyone browsing at the stationery store will see an incredible array of pop-up cards available for any occasion. The workings of pop-up cards and pop-up books can be remarkably intricate. Behind such designs lies beautiful geometry involving the intersection of circles, cones, and spheres, the movements of linkages, and other constructions. The geometry can be modelled by algebraic equations, whose solutions explain the dynamics. For example, several pop-up motions rely on the intersection of three spheres, a computation made every second for GPS location. Connecting the motions of the card structures with the algebra and geometry reveals abstract mathematics performing tangible calculations. Beginning with the nephroid in the 19th-century, the mathematics of pop-up design is now at the frontiers of rigid origami and algorithmic computational complexity. All topics are accessible to those familiar with high-school mathematics; no calculus required. Explanations are supplemented by 140+ figures and 20 animations.
Ever since Lorensen and Cline published their paper on the Marching Cubes algorithm, isosurfaces have been a standard technique for the visualization of 3D volumetric data. Yet there is no book exclusively devoted to isosurfaces. Isosurfaces: Geometry, Topology, and Algorithms represents the first book to focus on basic algorithms for isosurface construction. It also gives a rigorous mathematical perspective on some of the algorithms and results. In color throughout, the book covers the Marching Cubes algorithm and variants, dual contouring algorithms, multilinear interpolation, multiresolution isosurface extraction, isosurfaces in four dimensions, interval volumes, and contour trees. It also describes data structures for faster isosurface extraction as well as methods for selecting significant isovalues. For designers of visualization software, the book presents an organized overview of the various algorithms associated with isosurfaces. For graduate students, it provides a solid introduction to research in this area. For visualization researchers, the book serves as a reference to the vast literature on isosurfaces.
Genetic Programming Theory and Practice VI was developed from the sixth workshop at the University of Michigan s Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the foremost international researchers and practitioners in the GP arena examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. These contributions address several significant interdependent themes which emerged from this year s workshop, including: (1) Making efficient and effective use of test data. (2) Sustaining the long-term evolvability of our GP systems. (3) Exploiting discovered subsolutions for reuse. (4) Increasing the role of a Domain Expert."
The book is a concise, self-contained and fully updated introduction to automata theory - a fundamental topic of computer sciences and engineering. The material is presented in a rigorous yet convincing way and is supplied with a wealth of examples, exercises and down-to-the earth convincing explanatory notes. An ideal text to a spectrum of one-term courses in computer sciences, both at the senior undergraduate and graduate students.
Here, the authors propose a method for the formal development of parallel programs - or multiprograms as they prefer to call them. They accomplish this with a minimum of formal gear, i.e. with the predicate calculus and the well- established theory of Owicki and Gries. They show that the Owicki/Gries theory can be effectively put to work for the formal development of multiprograms, regardless of whether these algorithms are distributed or not.
Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks--each of these require a designer's keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process--allowing designers to put some "intelligence" or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms, topology management, and mobility models to address challenges in the field. "Evolutionary Algorithms for Mobile Ad Hoc Networks" Instructs on how to identify, model, and optimize solutions to problems that arise in daily researchPresents complete and up-to-date surveys on topics like network and mobility simulatorsProvides sample problems along with solutions/descriptions used to solve each, with performance comparisonsCovers current, relevant issues in mobile networks, like energy use, broadcasting performance, device mobility, and more "Evolutionary Algorithms for Mobile Ad Hoc Networks" is an ideal book for researchers and students involved in mobile networks, optimization, advanced search techniques, and multi-objective optimization.
Algorithmic graph theory has been expanding at an extremely rapid rate since the middle of the twentieth century, in parallel with the growth of computer science and the accompanying utilization of computers, where efficient algorithms have been a prime goal. This book presents material on developments on graph algorithms and related concepts that will be of value to both mathematicians and computer scientists, at a level suitable for graduate students, researchers and instructors. The fifteen expository chapters, written by acknowledged international experts on their subjects, focus on the application of algorithms to solve particular problems. All chapters were carefully edited to enhance readability and standardize the chapter structure as well as the terminology and notation. The editors provide basic background material in graph theory, and a chapter written by the book's Academic Consultant, Martin Charles Golumbic (University of Haifa, Israel), provides background material on algorithms as connected with graph theory.
Recursion is one of the most fundamental concepts in computer science and a key programming technique that allows computations to be carried out repeatedly. Despite the importance of recursion for algorithm design, most programming books do not cover the topic in detail, despite the fact that numerous computer programming professors and researchers in the field of computer science education agree that recursion is difficult for novice students. Introduction to Recursive Programming provides a detailed and comprehensive introduction to recursion. This text will serve as a useful guide for anyone who wants to learn how to think and program recursively, by analyzing a wide variety of computational problems of diverse difficulty. It contains specific chapters on the most common types of recursion (linear, tail, and multiple), as well as on algorithm design paradigms in which recursion is prevalent (divide and conquer, and backtracking). Therefore, it can be used in introductory programming courses, and in more advanced classes on algorithm design. The book also covers lower-level topics related to iteration and program execution, and includes a rich chapter on the theoretical analysis of the computational cost of recursive programs, offering readers the possibility to learn some basic mathematics along the way. It also incorporates several elements aimed at helping students master the material. First, it contains a larger collection of simple problems in order to provide a solid foundation of the core concepts, before diving into more complex material. In addition, one of the book's main assets is the use of a step-by-step methodology, together with specially designed diagrams, for guiding and illustrating the process of developing recursive algorithms. Furthermore, the book covers combinatorial problems and mutual recursion. These topics can broaden students' understanding of recursion by forcing them to apply the learned concepts differently, or in a more sophisticated manner. The code examples have been written in Python 3, but should be straightforward to understand for students with experience in other programming languages. Finally, worked out solutions to over 120 end-of-chapter exercises are available for instructors.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer function, and highly distributed genetic programming systems. Application areas include chemical process control, circuit design, financial data mining and bioinformatics. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Blockchain and other trustless systems have gone from being relatively obscure technologies, which were only known to a small community of computer scientists and cryptologists, to mainstream phenomena that are now considered powerful game changers for many industries. This book explores and assesses real-world use cases and case studies on blockchain and related technologies. The studies describe the respective applications and address how these technologies have been deployed, the rationale behind their application, and finally, their outcomes. The book shares a wealth of experiences and lessons learned regarding financial markets, energy, SCM, healthcare, law and compliance. Given its scope, it is chiefly intended for academics and practitioners who want to learn more about blockchain applications.
Systematically teaches key paradigmic algorithm design methods Provides a deep insight into randomization
Maintaining a practical perspective, Python Programming: A Practical Approach acquaints you with the wonderful world of programming. The book is a starting point for those who want to learn Python programming. The backbone of any programming, which is the data structure and components such as strings, lists, etc., have been illustrated with many examples and enough practice problems to instill a level of self-confidence in the reader. Drawing on knowledge gained directly from teaching Computer Science as a subject and working on a wide range of projects related to ML, AI, deep learning, and blockchain, the authors have tried their best to present the necessary skills for a Python programmer. Once the foundation of Python programming is built and the readers are aware of the exact structure, dimensions, processing, building blocks, and representation of data, they can readily take up their specific problems from the area of interest and solve them with the help of Python. These include, but are not limited to, operators, control flow, strings, functions, module processing, object-oriented programming, exception and file handling, multithreading, synchronization, regular expressions, and Python database programming. This book on Python programming is specially designed to keep readers busy with learning fundamentals and generates a sense of confidence by attempting the assignment problems. We firmly believe that explaining any particular technology deviates from learning the fundamentals of a programming language. This book is focused on helping readers attempt implementation in their areas of interest through the skills imparted through this book. We have attempted to present the real essence of Python programming, which you can confidently apply in real life by using Python as a tool. Salient Features Based on real-world requirements and solution. Simple presentation without avoiding necessary details of the topic. Executable programs on almost every topic. Plenty of exercise questions, designed to test readers' skills and understanding. Purposefully designed to be instantly applicable, Python Programming: A Practical Approach provides implementation examples so that the described subject matter can be immediately implemented due to the well-known versatility of Python in handling different data types with ease.
The Design and Analysis of Computer Algorithms introduces the basic data structures and programming techniques often used in efficient algorithms. It covers the use of lists, push-down stacks, queues, trees, and graphs.
This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.
The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange for some approximation. This comprehensive introduction to data summarization, aimed at practitioners and students, showcases the algorithms, their behavior, and the mathematical underpinnings of their operation. The coverage starts with simple sums and approximate counts, building to more advanced probabilistic structures such as the Bloom Filter, distinct value summaries, sketches, and quantile summaries. Summaries are described for specific types of data, such as geometric data, graphs, and vectors and matrices. The authors offer detailed descriptions of and pseudocode for key algorithms that have been incorporated in systems from companies such as Google, Apple, Microsoft, Netflix and Twitter.
This book collects research works of data-driven medical diagnosis done via Artificial Intelligence based solutions, such as Machine Learning, Deep Learning and Intelligent Optimization. Physical devices powered with Artificial Intelligence are gaining importance in diagnosis and healthcare. Medical data from different sources can also be analyzed via Artificial Intelligence techniques for more effective results.
The two volumes LNAI 11649 and 11650 constitute the refereed proceedings of the 20th Annual Conference "Towards Autonomous Robotics", TAROS 2019, held in London, UK, in July 2019. The 87 full papers and 12 short papers presented were carefully reviewed and selected from 101 submissions. The papers present and discuss significant findings and advances in autonomous robotics research and applications. They are organized in the following topical sections: robotic grippers and manipulation; soft robotics, sensing and mobile robots; robotic learning, mapping and planning; human-robot interaction; and robotic systems and applications.
This book constitutes the proceedings of the 22nd International Symposium on Fundamentals of Computation Theory, FCT 2019, held in Copenhagen, Denmark, in August 2019.The 21 full papers included in this volume were carefully reviewed and selected from 45 submissions. In addition, the book contains 3 invited talks in full-paper length. The papers were organized in topical sections named: formal methods, complexity, and algorithms.
Eigenvalue computations are ubiquitous in science and engineering. John Francis's implicitly shifted QR algorithm has been the method of choice for small to medium sized eigenvalue problems since its invention in 1959. This book presents a new view of this classical algorithm. While Francis's original procedure chases bulges, the new version chases core transformations, which allows the development of fast algorithms for eigenvalue problems with a variety of special structures. This also leads to a fast and backward stable algorithm for computing the roots of a polynomial by solving the companion matrix eigenvalue problem. The authors received a SIAM Outstanding Paper prize for this work. This book will be of interest to researchers in numerical linear algebra and their students.
This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.
This book constitutes the proceedings of the 17th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2019, held in Avila, Spain, in June 2019. The 19 regular and 14 demo papers presented in this volume were carefully reviewed and selected from 55 submissions. They deal with the application and validation of agent-based models, methods, and technologies in a number of key applications areas, including: Agronomy and Internet of Things, coordination and structure, finance and energy, function and autonomy, humans and societies, reasoning and optimization, traffic and routing.
This Festschrift volume is published in honor of Bernhard Steffen, Professor at the Technical University of Dortmund, on the occasion of his 60th birthday. His vision as well as his theoretical and practical work span the development and implementation of novel, specific algorithms, and the establishment of cross-community relationships with the effect to obtain simpler, yet more powerful solutions. He initiated many new lines of research through seminal papers that pioneered various fields, starting with the Concurrency Workbench, a model checking toolbox that significantly influenced the research and development of mode based high assurance systems worldwide. The contributions in this volume reflect the breadth and impact of his work. The introductory paper by the volume editors, the 23 full papers and two personal statements relate to Bernhard's research and life. This volume, the talks and the entire B-Day at ISoLA 2018 are a tribute to the first 30 years of Bernhard's passion, impact and vision for many facets of computer science in general and for formal methods in particular. Impact and vision include the many roles that formal methods-supported software development should play in education, in industry and in society. |
You may like...
SQL: 1999 - Understanding Relational…
Jim Melton, Alan R. Simon
Paperback
Tabular Modeling in Microsoft SQL Server…
Marco Russo, Alberto Ferrari
Paperback
Object Management in Distributed…
Wujuan Lin, Bharadwaj Veeravalli
Hardcover
R2,748
Discovery Miles 27 480
Deductive and Object-Oriented Databases…
Tok W. Ling, Alberto O. Mendelzon, …
Paperback
R1,646
Discovery Miles 16 460
|