![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General theory of computing > Data structures
Full of practical examples, Introduction to Scheduling presents the basic concepts and methods, fundamental results, and recent developments of scheduling theory. With contributions from highly respected experts, it provides self-contained, easy-to-follow, yet rigorous presentations of the material. The book first classifies scheduling problems and their complexity and then presents examples that demonstrate successful techniques for the design of efficient approximation algorithms. It also discusses classical problems, such as the famous makespan minimization problem, as well as more recent advances, such as energy-efficient scheduling algorithms. After focusing on job scheduling problems that encompass independent and possibly parallel jobs, the text moves on to a practical application of cyclic scheduling for the synthesis of embedded systems. It also proves that efficient schedules can be derived in the context of steady-state scheduling. Subsequent chapters discuss scheduling large and computer-intensive applications on parallel resources, illustrate different approaches of multi-objective scheduling, and show how to compare the performance of stochastic task-resource systems. The final chapter assesses the impact of platform models on scheduling techniques. From the basics to advanced topics and platform models, this volume provides a thorough introduction to the field. It reviews classical methods, explores more contemporary models, and shows how the techniques and algorithms are used in practice.
Algorithms and Theory of Computation Handbook, Second Edition: General Concepts and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. Along with updating and revising many of the existing chapters, this second edition contains four new chapters that cover external memory and parameterized algorithms as well as computational number theory and algorithmic coding theory. This best-selling handbook continues to help computer professionals and engineers find significant information on various algorithmic topics. The expert contributors clearly define the terminology, present basic results and techniques, and offer a number of current references to the in-depth literature. They also provide a glimpse of the major research issues concerning the relevant topics.
The hybrid/heterogeneous nature of future microprocessors and large high-performance computing systems will result in a reliance on two major types of components: multicore/manycore central processing units and special purpose hardware/massively parallel accelerators. While these technologies have numerous benefits, they also pose substantial performance challenges for developers, including scalability, software tuning, and programming issues. Researchers at the Forefront Reveal Results from Their Own State-of-the-Art Work Edited by some of the top researchers in the field and with contributions from a variety of international experts, Scientific Computing with Multicore and Accelerators focuses on the architectural design and implementation of multicore and manycore processors and accelerators, including graphics processing units (GPUs) and the Sony Toshiba IBM (STI) Cell Broadband Engine (BE) currently used in the Sony PlayStation 3. The book explains how numerical libraries, such as LAPACK, help solve computational science problems; explores the emerging area of hardware-oriented numerics; and presents the design of a fast Fourier transform (FFT) and a parallel list ranking algorithm for the Cell BE. It covers stencil computations, auto-tuning, optimizations of a computational kernel, sequence alignment and homology, and pairwise computations. The book also evaluates the portability of drug design applications to the Cell BE and illustrates how to successfully exploit the computational capabilities of GPUs for scientific applications. It concludes with chapters on dataflow frameworks, the Charm++ programming model, scan algorithms, and a portable intracore communication framework. Explores the New Computational Landscape of Hybrid Processors By offering insight into the process of constructing and effectively using the technology, this volume provides a thorough and practical introduction to the area of hybrid computing. It discusses introductory concepts and simple examples of parallel computing, logical and performance debugging for parallel computing, and advanced topics and issues related to the use and building of many applications.
This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice. Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features. Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today's students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
Designed for introductory parallel computing courses at the advanced undergraduate or beginning graduate level, Elements of Parallel Computing presents the fundamental concepts of parallel computing not from the point of view of hardware, but from a more abstract view of algorithmic and implementation patterns. The aim is to facilitate the teaching of parallel programming by surveying some key algorithmic structures and programming models, together with an abstract representation of the underlying hardware. The presentation is friendly and informal. The content of the book is language neutral, using pseudocode that represents common programming language models. The first five chapters present core concepts in parallel computing. SIMD, shared memory, and distributed memory machine models are covered, along with a brief discussion of what their execution models look like. The book also discusses decomposition as a fundamental activity in parallel algorithmic design, starting with a naive example, and continuing with a discussion of some key algorithmic structures. Important programming models are presented in depth, as well as important concepts of performance analysis, including work-depth analysis of task graphs, communication analysis of distributed memory algorithms, key performance metrics, and a discussion of barriers to obtaining good performance. The second part of the book presents three case studies that reinforce the concepts of the earlier chapters. One feature of these chapters is to contrast different solutions to the same problem, using select problems that aren't discussed frequently in parallel computing textbooks. They include the Single Source Shortest Path Problem, the Eikonal equation, and a classical computational geometry problem: computation of the two-dimensional convex hull. After presenting the problem and sequential algorithms, each chapter first discusses the sources of parallelism then surveys parallel algorithms.
Applicable to any problem that requires a finite number of solutions, finite state-based models (also called finite state machines or finite state automata) have found wide use in various areas of computer science and engineering. Handbook of Finite State Based Models and Applications provides a complete collection of introductory materials on finite state theories, algorithms, and the latest domain applications. For beginners, the book is a handy reference for quickly looking up model details. For more experienced researchers, it is suitable as a source of in-depth study in this area. The book first introduces the fundamentals of automata theory, including regular expressions, as well as widely used automata, such as transducers, tree automata, quantum automata, and timed automata. It then presents algorithms for the minimization and incremental construction of finite automata and describes Esterel, an automata-based synchronous programming language for embedded system software development. Moving on to applications, the book explores regular path queries on graph-structured data, timed automata in model checking security protocols, pattern matching, compiler design, and XML processing. It also covers other finite state-based modeling approaches and applications, including Petri nets, statecharts, temporal logic, and UML state machine diagrams.
This book provides in-depth and wide-ranging analyses of the emergence, and subsequent ubiquity, of algorithms in diverse realms of social life. The plurality of Algorithmic Cultures emphasizes: 1) algorithms' increasing importance in the formation of new epistemic and organizational paradigms; and 2) the multifaceted analyses of algorithms across an increasing number of research fields. The authors in this volume address the complex interrelations between social groups and algorithms in the construction of meaning and social interaction. The contributors highlight the performative dimensions of algorithms by exposing the dynamic processes through which algorithms - themselves the product of a specific approach to the world - frame reality, while at the same time organizing how people think about society. With contributions from leading experts from Media Studies, Social Studies of Science and Technology, Cultural and Media Sociology from Canada, France, Germany, UK and the USA, this volume presents cutting edge empirical and conceptual research that includes case studies on social media platforms, gaming, financial trading and mobile security infrastructures.
You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain.
Anyone browsing at the stationery store will see an incredible array of pop-up cards available for any occasion. The workings of pop-up cards and pop-up books can be remarkably intricate. Behind such designs lies beautiful geometry involving the intersection of circles, cones, and spheres, the movements of linkages, and other constructions. The geometry can be modelled by algebraic equations, whose solutions explain the dynamics. For example, several pop-up motions rely on the intersection of three spheres, a computation made every second for GPS location. Connecting the motions of the card structures with the algebra and geometry reveals abstract mathematics performing tangible calculations. Beginning with the nephroid in the 19th-century, the mathematics of pop-up design is now at the frontiers of rigid origami and algorithmic computational complexity. All topics are accessible to those familiar with high-school mathematics; no calculus required. Explanations are supplemented by 140+ figures and 20 animations.
Data compression is mandatory to manage massive datasets, indexing is fundamental to query them. However, their goals appear as counterposed: the former aims at minimizing data redundancies, whereas the latter augments the dataset with auxiliary information to speed up the query resolution. In this monograph we introduce solutions that overcome this dichotomy. We start by presenting the use of optimization techniques to improve the compression of classical data compression algorithms, then we move to the design of compressed data structures providing fast random access or efficient pattern matching queries on the compressed dataset. These theoretical studies are supported by experimental evidences of their impact in practical scenarios.
Numerical Analysis with Algorithms and Programming is the first comprehensive textbook to provide detailed coverage of numerical methods, their algorithms, and corresponding computer programs. It presents many techniques for the efficient numerical solution of problems in science and engineering. Along with numerous worked-out examples, end-of-chapter exercises, and Mathematica (R) programs, the book includes the standard algorithms for numerical computation: Root finding for nonlinear equations Interpolation and approximation of functions by simpler computational building blocks, such as polynomials and splines The solution of systems of linear equations and triangularization Approximation of functions and least square approximation Numerical differentiation and divided differences Numerical quadrature and integration Numerical solutions of ordinary differential equations (ODEs) and boundary value problems Numerical solution of partial differential equations (PDEs) The text develops students' understanding of the construction of numerical algorithms and the applicability of the methods. By thoroughly studying the algorithms, students will discover how various methods provide accuracy, efficiency, scalability, and stability for large-scale systems.
Combining knowledge with strategies, Data Structure Practice for Collegiate Programming Contests and Education presents the first comprehensive book on data structure in programming contests. This book is designed for training collegiate programming contest teams in the nuances of data structure and for helping college students in computer-related majors to gain deeper understanding of data structure. Based on successful experiences in many world-level contests, the book includes 204 typical problems and detailed analyses selected from the ACM International Collegiate Programming Contest and other major programming contests since 1990. It is divided into four sections that focus on: Fundamental programming skills Experiments for linear lists Experiments for trees Experiments for graphs Each chapter contains a set of problems and includes hints. The book also provides test data for most problems as well as sources and IDs for online judgments that help with improving programming skills. Introducing a multi-options model and considerations of context, Data Structure Practice for Collegiate Programming Contests and Education encourages students to think creatively in solving programming problems. By taking readers through practical contest problems from analysis to implementation, it provides a complete source for enhancing understanding and polishing skills in programming.
This book focuses on flight vehicles and their navigational systems, discussing different forms of flight structures and their control systems, from fixed wings to rotary crafts. Software simulation enables testing of the hardware without actual implementation, and the flight simulators, mechanics, glider development and navigation systems presented here are suitable for lab-based experimentation studies. It explores laboratory testing of flight navigational sensors, such as the magnetic, acceleration and Global Positioning System (GPS) units, and illustrates the six-axis inertial measurement unit (IMU) instrumentation as well as its data acquisition methodology. The book offers an introduction to the various unmanned aerial vehicle (UAV) systems and their accessories, including the linear quadratic regulator (LQR) method for controlling the rotorcraft. It also describes a Matrix Laboratory (MATLAB) control algorithm that simulates and runs the lab-based 3 degrees of freedom (DOF) helicopter, as well as LabVIEW software used to validate controller design and data acquisition. Lastly, the book explores future developments in aviation techniques.
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today's students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
The second edition of this popular book presents the theory of graphs from an algorithmic viewpoint. The authors present the graph theory in a rigorous, but informal style and cover most of the main areas of graph theory. The ideas of surface topology are presented from an intuitive point of view. We have also included a discussion on linear programming that emphasizes problems in graph theory. The text is suitable for students in computer science or mathematics programs.
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
Crossing Numbers of Graphs is the first book devoted to the crossing number, an increasingly popular object of study with surprising connections. The field has matured into a large body of work, which includes identifiable core results and techniques. The book presents a wide variety of ideas and techniques in topological graph theory, discrete geometry, and computer science. The first part of the text deals with traditional crossing number, crossing number values, crossing lemma, related parameters, computational complexity, and algorithms. The second part includes the rich history of alternative crossing numbers, the rectilinear crossing number, the pair crossing number, and the independent odd crossing number.It also includes applications of the crossing number outside topological graph theory. Aimed at graduate students and professionals in both mathematics and computer science The first book of its kind devoted to the topic Authored by a noted authority in crossing numbers
Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming. Principles and Modeling Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields. Formalism and AlgorithmsThe third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems. FAQsAlong with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability. The First Steps toward a Bayesian ComputerA new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.
Swarm Intelligence: Principles, Advances, and Applications delivers in-depth coverage of bat, artificial fish swarm, firefly, cuckoo search, flower pollination, artificial bee colony, wolf search, and gray wolf optimization algorithms. The book begins with a brief introduction to mathematical optimization, addressing basic concepts related to swarm intelligence, such as randomness, random walks, and chaos theory. The text then: Describes the various swarm intelligence optimization methods, standardizing the variants, hybridizations, and algorithms whenever possible Discusses variants that focus more on binary, discrete, constrained, adaptive, and chaotic versions of the swarm optimizers Depicts real-world applications of the individual optimizers, emphasizing variable selection and fitness function design Details the similarities, differences, weaknesses, and strengths of each swarm optimization method Draws parallels between the operators and searching manners of the different algorithms Swarm Intelligence: Principles, Advances, and Applications presents a comprehensive treatment of modern swarm intelligence optimization methods, complete with illustrative examples and an extendable MATLAB (R) package for feature selection in wrapper mode applied on different data sets with benchmarking using different evaluation criteria. The book provides beginners with a solid foundation of swarm intelligence fundamentals, and offers experts valuable insight into new directions and hybridizations.
Real-world information is imperfect and is usually described in natural language (NL). Moreover, this information is often partially reliable and a degree of reliability is also expressed in NL. In view of this, the concept of a Z-number is a more adequate concept for the description of real-world information. The main critical problem that naturally arises in processing Z-numbers-based information is the computation with Z-numbers. Nowadays, there is no arithmetic of Z-numbers suggested in existing literature.This book is the first to present a comprehensive and self-contained theory of Z-arithmetic and its applications. Many of the concepts and techniques described in the book, with carefully worked-out examples, are original and appear in the literature for the first time.The book will be helpful for professionals, academics, managers and graduate students in fuzzy logic, decision sciences, artificial intelligence, mathematical economics, and computational economics.
* Provides simple, conceptual descriptions of everyday technologies * Includes clear examples and diagrams that demonstrate the principles and techniques, not just a "how-to" punch list * Covers advanced topics for readers who want to dive into the deep end of the technology pool * Avoids jargon-where terminology does appear, the text will provide clear, concise definitions
Addresses a central problem in cognitive science, concerning the learning procedures through which humans acquire and represent natural language. Brings together world leading scholars from a range of disciplines, includingcomputational linguistics, psychology, behavioural science, and mathematical linguistics. Will appeal to researchers in computational and mathematical linguistics, psychology and behavioral science, AI and NLP. Represents a wide spectrum of perspectives
Provides detailed introduction to Internet of Healthcare Things (IoHT) and its applications Reviews underlying sensor and hardware technologies Includes recent advances in the IoHT such as remote healthcare monitoring and wearable devices Explores applications of Data Analytics/Data Mining in IoHT, including data management and data governance Focusses on regulatory and compliance issues in IoHT
This easy-to-follow textbook provides a student-friendly introduction to programming and algorithms. Emphasis is placed on the threshold concepts that present barriers to learning, including the questions that students are often too embarrassed to ask. The book promotes an active learning style in which a deeper understanding is gained from evaluating, questioning, and discussing the material, and practised in hands-on exercises. Although R is used as the language of choice for all programs, strict assumptions are avoided in the explanations in order for these to remain applicable to other programming languages. Features: provides exercises at the end of each chapter; includes three mini projects in the final chapter; presents a list of titles for further reading at the end of the book; discusses the key aspects of loops, recursions, program and algorithm efficiency and accuracy, sorting, linear systems of equations, and file processing; requires no prior background knowledge in this area. |
You may like...
Handbook of Research on Modeling…
Sujata Dash, B. K. Tripathy, …
Hardcover
R6,518
Discovery Miles 65 180
Computational and Statistical Methods…
Shen Liu, James McGree, …
Hardcover
R1,802
Discovery Miles 18 020
Comprehensive Metaheuristics…
S. Ali Mirjalili, Amir Hossein Gandomi
Paperback
R3,956
Discovery Miles 39 560
|