![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General theory of computing > Data structures
1) Focuses on the concepts and implementation strategies of various Deep Learning algorithms through properly curated examples. 2) The subject area will be valid for the next 10 years or so, as Deep Learning theory/algorithms and their applications will not be outdated easily. Hence there will be demand for such a book in the market. 3) In comparison to other titles, this book rigorously covers mathematical and conceptual details of relevant topics.
Introducing strong foundations to practical Cyber-Physical Systems Leveraging CPS for pandemic affected society Ensuring Secured and Privacy aware CPS for Sensitive Data in a pandemic situation Providing methodologies to deploy CPS in industries affect by a pandemic
The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for wellbeing and healthcare. One key development in this area is wireless, wearable and implantable "in vivo" monitoring and intervention. A myriad of platforms are now available from both academic institutions and commercial organisations. They permit the management of patients with both acute and chronic symptoms, including diabetes, cardiovascular diseases, treatment of epilepsy and other debilitating neurological disorders. Despite extensive developments in sensing technologies, there are significant research issues related to system integration, sensor miniaturisation, low-power sensor interface, wireless telemetry and signal processing. In the 2nd edition of this popular and authoritative reference on Body Sensor Networks (BSN), major topics related to the latest technological developments and potential clinical applications are discussed, with contents covering. Biosensor Design, Interfacing and Nanotechnology Wireless Communication and Network Topologies Communication Protocols and Standards Energy Harvesting and Power Delivery Ultra-low Power Bio-inspired Processing Multi-sensor Fusion and Context Aware Sensing Autonomic Sensing Wearable, Ingestible Sensor Integration and Exemplar Applications System Integration and Wireless Sensor Microsystems The book also provides a comprehensive review of the current wireless sensor development platforms and a step-by-step guide to developing your own BSN applications through the use of BSN development kit.
The detailed survey on constraint handling techniques specifically penalty function approach is presented in the book; presents the Cohort Intelligence (CI) algorithm incorporated with a novel self-adaptive penalty function (SAPF) approach which helped in avoiding preliminary trials of selecting penalty parameter. The approach is referred to as CI-SAPF; CI-SAPF is further hybridized with Colliding Bodies Optimization (CBO) algorithm to promote a parameter less metaheuristic algorithm; presents solutions to several problems from discrete truss structure domain, mixed variable design engineering domain, and linear & nonlinear domain validating the CI-SAPF and CI-SAPF-CBO; behavior of SAPF approach on pseudo objective function, constraint violations, penalty function and penalty parameter have been analyzed and discussed in very detail; presents the in-depth analysis and comparison of the CI-SAPF, CI-SAPF-CBO and CBO algorithms with other contemporary techniques; provides the solution to real-world manufacturing problems of optimizing multi pass milling and turning processes using CI-SPF, CI-SAPF and CI-SAPF-CBO approaches.
Offers fundamental theories and practical and more sophisticated applications of Evolutionary Computation in varied industries Provides insight into various platforms, paradigms, techniques, and tools used in Evolutionary Computation for diverse fields Presents an understanding related to optimization, performance tuning, virtualization, deployment models, and their applications Covers a variety of applications for social and essential models and is based on real life examples Useful for decision making based on optimized data through Evolutionary Computation in multi-dimensions
This book provides a platform for academics and practitioners for sharing innovative results, approaches, developments, and research projects in computer science and information technology, focusing on the latest challenges in advanced computing and solutions introducing mathematical and engineering approaches. The book presents discussions in the area of advances and challenges of modern computer science, including telecommunications and signal processing, machine learning and artificial intelligence, intelligent control systems, modeling and simulation, data science and big data, data visualization and graphics systems, distributed, cloud and high-performance computing, and software engineering. The papers included are presented at TELECCON 2019 organized by Peter the Great St. Petersburg University during November 18-19, 2019.
The 4th FTRA International Conference on Information Technology
Convergence and Services (ITCS-12) will be held in Gwangju, Korea
on September 6 - 8, 2012.
This book presents a unique, understandable view of machine learning using many practical examples and access to free professional software and open source code. The user-friendly software can immediately be used to apply everything you learn in the book without the need for programming. After an introduction to machine learning and artificial intelligence, the chapters in Part II present deeper explanations of machine learning algorithms, performance evaluation of machine learning models, and how to consider data in machine learning environments. In Part III the author explains automatic speech recognition, and in Part IV biometrics recognition, face- and speaker-recognition. By Part V the author can then explain machine learning by example, he offers cases from real-world applications, problems, and techniques, such as anomaly detection and root cause analyses, business process improvement, detecting and predicting diseases, recommendation AI, several engineering applications, predictive maintenance, automatically classifying datasets, dimensionality reduction, and image recognition. Finally, in Part VI he offers a detailed explanation of the AI-TOOLKIT, software he developed that allows the reader to test and study the examples in the book and the application of machine learning in professional environments. The author introduces core machine learning concepts and supports these with practical examples of their use, so professionals will appreciate his approach and use the book for self-study. It will also be useful as a supplementary resource for advanced undergraduate and graduate courses on machine learning and artificial intelligence.
The opportunistic network is an emerging and recent area of research. To make this research area more adaptable for practical and industrial use, there is a need to further investigate several research challenges in all aspects of opportunistic networks. Therefore, Opportunistic Networks: Fundamentals, Applications and Emerging Trends provides theoretical, algorithmic, simulation, and implementation-based research developments related to fundamentals, applications, and emerging research trends in opportunistic networks. The book follows a theoretical approach to describe fundamentals to beginners and incorporates a practical approach depicting the implementation of real-life applications to intermediate and advanced readers. This book is beneficial for academicians, researchers, developers, and engineers who work in or are interested in the fields related to opportunistic networks, delay tolerant networks, and intermittently connected ad hoc networks. This book also serves as a reference book for graduate and postgraduate courses in computer science, computer engineering, and information technology streams.
Based on the practical experiences of its authors, who collectively have spent several decades teaching software skills to scientists. Readers only need a basic understanding of Python includes over a hundred exercises to allow readers to practice their skills
It explores a variety of modern applications in soft computing, including bioinspired computing, reconfigurable computing, fuzzy logic, fusion-based learning, intelligent healthcare systems, bioinformatics, data mining, functional approximation, genetic and evolutionary algorithms, hybrid models, machine learning, meta heuristics, neuro fuzzy system, and optimization principles. The book acts as a reference book for AI developers, researchers, and academicians as it addresses the recent technological developments in the field of soft computing.
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
This book seeks to generalize techniques and experiences in designing and analyzing cryptographic schemes for blockchain. It devotes three chapters to review the background and basic knowledge, four chapters to discuss specific types of cryptographic primitive design for blockchain, one chapter to discuss optimization tools and another chapter for blockchain regulation and economies. This book covers the systematic survey of research objects, as well as detailed reviews of cryptographic schemes, lectures and methodologies to practice cryptography. The main findings of this book are summarized as following, first, the practical design and analysis of cryptographic schemes for blockchain can address major problems in blockchain at algorithmic level. Then, some intrinsic deficiencies in some traditional cryptographic primitives, like centralized setup, impractical design, etc, prevent the successful application of these primitives in blockchain. However, huge efforts are being made to make these primitives practical and applicable for researchers. Finally, the formal and rigorous design and analysis of public key cryptographic algorithms is vital to blockchain. Design and Analysis of Cryptographic Algorithms in Blockchain is a useful textbook for graduate students and PhD students, or researches who wish to connect cryptography with blockchain for research and developing projects.
This book seeks to generalize techniques and experiences in designing and analyzing cryptographic schemes for blockchain. It devotes three chapters to review the background and basic knowledge, four chapters to discuss specific types of cryptographic primitive design for blockchain, one chapter to discuss optimization tools and another chapter for blockchain regulation and economies. This book covers the systematic survey of research objects, as well as detailed reviews of cryptographic schemes, lectures and methodologies to practice cryptography. The main findings of this book are summarized as following, first, the practical design and analysis of cryptographic schemes for blockchain can address major problems in blockchain at algorithmic level. Then, some intrinsic deficiencies in some traditional cryptographic primitives, like centralized setup, impractical design, etc, prevent the successful application of these primitives in blockchain. However, huge efforts are being made to make these primitives practical and applicable for researchers. Finally, the formal and rigorous design and analysis of public key cryptographic algorithms is vital to blockchain. Design and Analysis of Cryptographic Algorithms in Blockchain is a useful textbook for graduate students and PhD students, or researches who wish to connect cryptography with blockchain for research and developing projects.
Nature-based algorithms play an important role among artificial intelligence algorithms. Among them are global optimization algorithms called swarm intelligence algorithms. These algorithms that use the behavior of simple agents and various ways of cooperation between them, are used to solve specific problems that are defined by the so-called objective function. Swarm intelligence algorithms are inspired by the social behavior of various animal species, e.g. ant colonies, bird flocks, bee swarms, schools of fish, etc. The family of these algorithms is very large and additionally includes various types of modifications to enable swarm intelligence algorithms to solve problems dealing with areas other than those for which they were originally developed. This book presents 24 swarm algorithms together with their modifications and practical applications. Each chapter is devoted to one algorithm. It contains a short description along with a pseudo-code showing the various stages of its operation. In addition, each chapter contains a description of selected modifications of the algorithm and shows how it can be used to solve a selected practical problem. This book should also be useful for undergraduate and postgraduate students studying nature-based optimization algorithms, and can be a helpful tool for learning these algorithms, along with their modifications and practical applications. In addition, it can be a useful source of knowledge for scientists working in the field of artificial intelligence, as well as for engineers interested in using this type of algorithms in their work. If the reader wishes to expand his knowledge beyond the basics of swarm intelligence algorithms presented in this book and is interested in more detailed information, we recommend the book "Swarm Intelligence Algorithms: A Tutorial" (Edited by A. Slowik, CRC Press, 2020). It contains a detailed explanation of how each algorithm works, along with relevant program codes in Matlab and the C ++ programming language, as well as numerical examples illustrating step-by-step how individual algorithms work.
Blockchain and other trustless systems have gone from being relatively obscure technologies, which were only known to a small community of computer scientists and cryptologists, to mainstream phenomena that are now considered powerful game changers for many industries. This book explores and assesses real-world use cases and case studies on blockchain and related technologies. The studies describe the respective applications and address how these technologies have been deployed, the rationale behind their application, and finally, their outcomes. The book shares a wealth of experiences and lessons learned regarding financial markets, energy, SCM, healthcare, law and compliance. Given its scope, it is chiefly intended for academics and practitioners who want to learn more about blockchain applications.
This book offers a self-contained guide to advanced algorithms and their applications in various fields of science. Gathering contributions by authoritative researchers in the field of mathematics, statistics and computer science, it aims at offering a comprehensive and up-to-date view of algorithms, including the theory behind them, as well as practical considerations, current limitations and solutions. It covers applications in energy management, decision making, computer networks, materials science, mechanics and process optimization. It offers an integrated and timely guide to important algorithms, and represents a valuable reference resource for graduate students and researchers in various fields of applied mathematics, statistics and engineering.
This new book-the first of its kind-examines the use of algorithmic techniques to compress random and non-random sequential strings found in chains of polymers. The book is an introduction to algorithmic complexity. Examples taken from current research in the polymer sciences are used for compression of like-natured properties as found on a chain of polymers. Both theory and applied aspects of algorithmic compression are reviewed. A description of the types of polymers and their uses is followed by a chapter on various types of compression systems that can be used to compress polymer chains into manageable units. The work is intended for graduate and postgraduate university students in the physical sciences and engineering.
ALGORITHMS IN BIOINFORMATICS Explore a comprehensive and insightful treatment of the practical application of bioinformatic algorithms in a variety of fields Algorithms in Bioinformatics: Theory and Implementation delivers a fulsome treatment of some of the main algorithms used to explain biological functions and relationships. It introduces readers to the art of algorithms in a practical manner which is linked with biological theory and interpretation. The book covers many key areas of bioinformatics, including global and local sequence alignment, forced alignment, detection of motifs, Sequence logos, Markov chains or information entropy. Other novel approaches are also described, such as Self-Sequence alignment, Objective Digital Stains (ODSs) or Spectral Forecast and the Discrete Probability Detector (DPD) algorithm. The text incorporates graphical illustrations to highlight and emphasize the technical details of computational algorithms found within, to further the reader's understanding and retention of the material. Throughout, the book is written in an accessible and practical manner, showing how algorithms can be implemented and used in JavaScript on Internet Browsers. The author has included more than 120 open-source implementations of the material, as well as 33 ready-to-use presentations. The book contains original material that has been class-tested by the author and numerous cases are examined in a biological and medical context. Readers will also benefit from the inclusion of: A thorough introduction to biological evolution, including the emergence of life, classifications and some known theories and molecular mechanisms A detailed presentation of new methods, such as Self-sequence alignment, Objective Digital Stains and Spectral Forecast A treatment of sequence alignment, including local sequence alignment, global sequence alignment and forced sequence alignment with full implementations Discussions of position-specific weight matrices, including the count, weight, relative frequencies, and log-likelihoods matrices A detailed presentation of the methods related to Markov Chains as well as a description of their implementation in Bioinformatics and adjacent fields An examination of information and entropy, including sequence logos and explanations related to their meaning An exploration of the current state of bioinformatics, including what is known and what issues are usually avoided in the field A chapter on philosophical transactions that allows the reader a broader view of the prediction process Native computer implementations in the context of the field of Bioinformatics Extensive worked examples with detailed case studies that point out the meaning of different results Perfect for professionals and researchers in biology, medicine, engineering, and information technology, as well as upper level undergraduate students in these fields, Algorithms in Bioinformatics: Theory and Implementation will also earn a place in the libraries of software engineers who wish to understand how to implement bioinformatic algorithms in their products.
Understand the introductory concepts and design principles of algorithms and their complexities. Demonstrate the programming implementations of all the algorithms using C-Language. Be an excellent handbook on algorithms with self-explanatory chapters enriched with problems and solutions.
"High Performance Deformable Image Registration Algorithms for
Manycore Processors" develops highly data-parallel image
registration algorithms suitable for use on modern multi-core
architectures, including graphics processing units (GPUs). Focusing
on deformable registration, we show how to develop data-parallel
versions of the registration algorithm suitable for execution on
the GPU. Image registration is the process of aligning two or more
images into a common coordinate frame and is a fundamental step to
be able to compare or fuse data obtained from different sensor
measurements. Extracting useful information from 2D/3D data is
essential to realizing key technologies underlying our daily lives.
Examples include autonomous vehicles and humanoid robots that can
recognize and manipulate objects in cluttered environments using
stereo vision and laser sensing and medical imaging to localize and
diagnose tumors in internal organs using data captured by CT/MRI
scans. This book demonstrates: How to redesign widely used image registration algorithms so as to best expose the underlying parallelism available in these algorithmsHow to pose and implement the parallel versions of the algorithms within the single instruction, multiple data (SIMD) model supported by GPUsProgramming "tricks" that can help readers develop other image processing algorithms, including registration algorithms for the GPU
This book presents watermarking algorithms derived from signal processing methods such as wavelet transform, matrix decomposition and cosine transform to address the limitations of current technologies. For each algorithm, mathematical foundations are explained with analysis conducted to evaluate performances on robotness and efficiency. Combining theories and practice, it is suitable for information security researchers and industrial engineers.
Soft computing techniques are no longer limited to the arena of computer science. The discipline has an exponentially growing demand in other branches of science and engineering and even into health and social science. This book contains theory and applications of soft computing in engineering, health, and social and applied sciences. Different soft computing techniques such as artificial neural networks, fuzzy systems, evolutionary algorithms and hybrid systems are discussed. It also contains important chapters in machine learning and clustering. This book presents a survey of the existing knowledge and also the current state of art development through original new contributions from the researchers. This book may be used as a one-stop reference book for a broad range of readers worldwide interested in soft computing. In each chapter, the preliminaries have been presented first and then the advanced discussion takes place. Learners and researchers from a wide variety of backgrounds will find several useful tools and techniques to develop their soft computing skills. This book is meant for graduate students, faculty and researchers willing to expand their knowledge in any branch of soft computing. The readers of this book will require minimum prerequisites of undergraduate studies in computation and mathematics.
This book proposes tools for analysis of multidimensional and metric data, by establishing a state-of-the-art of the existing solutions and developing new ones. It mainly focuses on visual exploration of these data by a human analyst, relying on a 2D or 3D scatter plot display obtained through Dimensionality Reduction. Performing diagnosis of an energy system requires identifying relations between observed monitoring variables and the associated internal state of the system. Dimensionality reduction, which allows to represent visually a multidimensional dataset, constitutes a promising tool to help domain experts to analyse these relations. This book reviews existing techniques for visual data exploration and dimensionality reduction such as tSNE and Isomap, and proposes new solutions to challenges in that field. In particular, it presents the new unsupervised technique ASKI and the supervised methods ClassNeRV and ClassJSE. Moreover, MING, a new approach for local map quality evaluation is also introduced. These methods are then applied to the representation of expert-designed fault indicators for smart-buildings, I-V curves for photovoltaic systems and acoustic signals for Li-ion batteries. |
You may like...
Comprehensive Metaheuristics…
S. Ali Mirjalili, Amir Hossein Gandomi
Paperback
R3,956
Discovery Miles 39 560
Air Traffic Control Automated Systems
Bestugin A.R., Eshenko A.A., …
Hardcover
R3,133
Discovery Miles 31 330
Proceedings of ELM-2015 Volume 1…
Jiuwen Cao, Kezhi Mao, …
Hardcover
Scheduling Problems - New Applications…
Rodrigo Da Rosa Righi
Hardcover
R3,068
Discovery Miles 30 680
|