![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Data structures
Understand the introductory concepts and design principles of algorithms and their complexities. Demonstrate the programming implementations of all the algorithms using C-Language. Be an excellent handbook on algorithms with self-explanatory chapters enriched with problems and solutions.
This book provides an integrated solution for security and safety in the home, covering both assistance in health monitoring and safety from strangers/intruders who want to enter the home with harmful intentions. It defines a system whereby recognition of a person/stranger at the door is done using three modules: Face Recognition, Voice Recognition and Similarity Index. These three modules are taken together to provide a percentage likelihood that the individual is in the "known" or "unknown" category. The system can also continuously monitor the health parameters of a vulnerable person living alone at home and aid them in calling for help in an emergency. The authors have analyzed a number of existing biometric techniques to provide security for an individual living alone at home. These biometric techniques have been tested using MATLAB (R) image processing and signal processing toolboxes, and results have been calculated on the basis of recognition rate. A major contribution in providing security is a hybrid algorithm proposed by the author named PICA, which combines features of both PCA (Principle Component Analysis) and ICA (Independent Component Analysis) algorithms. This hybrid approach gives better performance recognition than either system alone. The second proposed hybrid algorithm for voice recognition is named as a MFRASTA algorithm by combining features of MFCC (Mel Frequency Cepstral Coefficient) and RASTA-PLP (RelAtive SpecTrA-Perceptual Linear Prediction) algorithm. After performing experiments, results are collected on the basis of recognition rate. The authors have also proposed a third technique named as a Similarity Index to provide trust-based security for an individual. This technique is text independent in which a person is recognized by pronunciation, frequency, tone, pitch, etc., irrespective of the content spoken by the person. By combining these three techniques, a high recognition rate is provided to the person at the door and high security to the individual living independently at home. In the final contribution, the authors have proposed a fingertip-based application for health monitoring by using the concept of sensors. This application is developed using iPhone 6's camera. When a person puts their fingertip on a camera lens, with the help of brightness of the skin, the person's heartbeat will be monitored. This is possible even with a low-quality camera. In case of any emergency, text messages will be sent to the family members of the individual living alone by using 3G Dongle and MATLAB tool. Results show that the proposed work outperforms all the existing techniques used in face recognition, voice recognition, and health monitoring alone.
This book presents fundamental concepts of optimization problems and its real-world applications in various fields. The core concepts of optimization, formulations and solution procedures of various real-world problems are provided in an easy-to-read manner. The unique feature of this book is that it presents unified knowledge of the modelling of real-world decision-making problems and provides the solution procedure using the appropriate optimization techniques. The book will help students, researchers, and faculty members to understand the need for optimization techniques for obtaining optimal solution for the decision-making problems. It provides a sound knowledge of modelling of real-world problems using optimization techniques. It is a valuable compendium of several optimization techniques for solving real-world application problems using optimization software LINGO. The book is useful for academicians, practitioners, students and researchers in the field of OR. It is written in simple language with a detailed explanation of the core concepts of optimization techniques. Readers of this book will understand the formulation of real-world problems and their solution procedures obtained using the appropriate optimization techniques.
This comprehensive reference text discusses evolutionary optimization techniques, to find optimal solutions for single and multi-objective problems. The text presents each evolutionary optimization algorithm along with its history and other working equations. It also discusses variants and hybrids of optimization techniques. The text presents step-by-step solution to a problem and includes software's like MATLAB and Python for solving optimization problems. It covers important optimization algorithms including single objective optimization, multi objective optimization, Heuristic optimization techniques, shuffled frog leaping algorithm, bacteria foraging algorithm and firefly algorithm. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, mechanical engineering, and computer science and engineering, this text: Provides step-by-step solution for each evolutionary optimization algorithm. Provides flowcharts and graphics for better understanding of optimization techniques. Discusses popular optimization techniques include particle swarm optimization and genetic algorithm. Presents every optimization technique along with the history and working equations. Includes latest software like Python and MATLAB.
Introduces a new web-based optimizer for Geometric algebra algorithms; Supports many programming languages as well as hardware; Covers the advantages of High-dimensional algebras; Includes geometrically intuitive support of quantum computing
Addresses real-world challenges in using AI Covers the entire AI process in a holistic manner Explains the technical issues in an easy to use manner Provides real-world examples of AI enablement Addresses the challenges of complex enterprises, coalitions and consortia Avoids the hype, with balanced perspective on benefits and drawbacks of AI
Discover the foundations of software engineering with this easy and intuitive guide In the newly updated second edition of Beginning Software Engineering, expert programmer and tech educator Rod Stephens delivers an instructive and intuitive introduction to the fundamentals of software engineering. In the book, you'll learn to create well-constructed software applications that meet the needs of users while developing the practical, hands-on skills needed to build robust, efficient, and reliable software. The author skips the unnecessary jargon and sticks to simple and straightforward English to help you understand the concepts and ideas discussed within. He also offers you real-world tested methods you can apply to any programming language. You'll also get: Practical tips for preparing for programming job interviews, which often include questions about software engineering practices A no-nonsense guide to requirements gathering, system modeling, design, implementation, testing, and debugging Brand-new coverage of user interface design, algorithms, and programming language choices Beginning Software Engineering doesn't assume any experience with programming, development, or management. It's plentiful figures and graphics help to explain the foundational concepts and every chapter offers several case examples, Try It Out, and How It Works explanatory sections. For anyone interested in a new career in software development, or simply curious about the software engineering process, Beginning Software Engineering, Second Edition is the handbook you've been waiting for.
The aim of this book is to present new computational techniques and methodologies for the analysis of the clinical, epidemiological and public health aspects of SARS-CoV-2 and COVID-19 pandemic. The book presents the use of soft computing techniques such as machine learning algorithms for analysis of the epidemiological aspects of the SARS-CoV-2. This book clearly explains novel computational image processing algorithms for the detection of COVID-19 lesions in lung CT and X-ray images. It explores various computational methods for computerized analysis of the SARS-CoV-2 infection including severity assessment. The book provides a detailed description of the algorithms which can potentially aid in mass screening of SARS-CoV-2 infected cases. Finally the book also explains the conventional epidemiological models and machine learning techniques for the prediction of the course of the COVID-19 epidemic. It also provides real life examples through case studies. The book is intended for biomedical engineers, mathematicians, postgraduate students; researchers; medical scientists working on identifying and tracking infectious diseases.
Based on the practical experiences of its authors, who collectively have spent several decades teaching software skills to scientists. Readers only need a basic understanding of Python includes over a hundred exercises to allow readers to practice their skills
The opportunistic network is an emerging and recent area of research. To make this research area more adaptable for practical and industrial use, there is a need to further investigate several research challenges in all aspects of opportunistic networks. Therefore, Opportunistic Networks: Fundamentals, Applications and Emerging Trends provides theoretical, algorithmic, simulation, and implementation-based research developments related to fundamentals, applications, and emerging research trends in opportunistic networks. The book follows a theoretical approach to describe fundamentals to beginners and incorporates a practical approach depicting the implementation of real-life applications to intermediate and advanced readers. This book is beneficial for academicians, researchers, developers, and engineers who work in or are interested in the fields related to opportunistic networks, delay tolerant networks, and intermittently connected ad hoc networks. This book also serves as a reference book for graduate and postgraduate courses in computer science, computer engineering, and information technology streams.
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
This book seeks to generalize techniques and experiences in designing and analyzing cryptographic schemes for blockchain. It devotes three chapters to review the background and basic knowledge, four chapters to discuss specific types of cryptographic primitive design for blockchain, one chapter to discuss optimization tools and another chapter for blockchain regulation and economies. This book covers the systematic survey of research objects, as well as detailed reviews of cryptographic schemes, lectures and methodologies to practice cryptography. The main findings of this book are summarized as following, first, the practical design and analysis of cryptographic schemes for blockchain can address major problems in blockchain at algorithmic level. Then, some intrinsic deficiencies in some traditional cryptographic primitives, like centralized setup, impractical design, etc, prevent the successful application of these primitives in blockchain. However, huge efforts are being made to make these primitives practical and applicable for researchers. Finally, the formal and rigorous design and analysis of public key cryptographic algorithms is vital to blockchain. Design and Analysis of Cryptographic Algorithms in Blockchain is a useful textbook for graduate students and PhD students, or researches who wish to connect cryptography with blockchain for research and developing projects.
This book seeks to generalize techniques and experiences in designing and analyzing cryptographic schemes for blockchain. It devotes three chapters to review the background and basic knowledge, four chapters to discuss specific types of cryptographic primitive design for blockchain, one chapter to discuss optimization tools and another chapter for blockchain regulation and economies. This book covers the systematic survey of research objects, as well as detailed reviews of cryptographic schemes, lectures and methodologies to practice cryptography. The main findings of this book are summarized as following, first, the practical design and analysis of cryptographic schemes for blockchain can address major problems in blockchain at algorithmic level. Then, some intrinsic deficiencies in some traditional cryptographic primitives, like centralized setup, impractical design, etc, prevent the successful application of these primitives in blockchain. However, huge efforts are being made to make these primitives practical and applicable for researchers. Finally, the formal and rigorous design and analysis of public key cryptographic algorithms is vital to blockchain. Design and Analysis of Cryptographic Algorithms in Blockchain is a useful textbook for graduate students and PhD students, or researches who wish to connect cryptography with blockchain for research and developing projects.
Based on the practical experiences of its authors, who collectively have spent several decades teaching software skills to scientists. Readers only need a basic understanding of Python includes over a hundred exercises to allow readers to practice their skills
Artificial Intelligence is a seemingly neutral technology, but it is increasingly used to manage workforces and make decisions to hire and fire employees. Its proliferation in the workplace gives the impression of a fairer, more efficient system of management. A machine can't discriminate, after all. Augmented Exploitation explores the reality of the impact of AI on workers' lives. While the consensus is that AI is a completely new way of managing a workplace, the authors show that, on the contrary, AI is used as most technologies are used under capitalism: as a smokescreen that hides the deep exploitation of workers. Going beyond platform work and the gig economy, the authors explore emerging forms of algorithmic governance and AI-augmented apps that have been developed to utilise innovative ways to collect data about workers and consumers, as well as to keep wages and worker representation under control. They also show that workers are not taking this lying down, providing case studies of new and exciting form of resistance that are springing up across the globe.
This revised and extensively expanded edition of "Computability and Complexity Theory" comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, andrelative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp Lipton.a chapter studying properties of the fundamental probabilistic complexity classesa study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Todaa thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified mannerProvides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes "
This book covers the most important topics in the area of pattern recognition, object recognition, computer vision, robot vision, medical computing, computational geometry, and bioinformatics systems. Students and researchers will find a comprehensive treatment of polygonal approximation and its real life applications. The book not only explains the theoretical aspects but also presents applications with detailed design parameters. The systematic development of the concept of polygonal approximation of digital curves and its scale-space analysis are useful and attractive to scholars in many fields.
This new book-the first of its kind-examines the use of algorithmic techniques to compress random and non-random sequential strings found in chains of polymers. The book is an introduction to algorithmic complexity. Examples taken from current research in the polymer sciences are used for compression of like-natured properties as found on a chain of polymers. Both theory and applied aspects of algorithmic compression are reviewed. A description of the types of polymers and their uses is followed by a chapter on various types of compression systems that can be used to compress polymer chains into manageable units. The work is intended for graduate and postgraduate university students in the physical sciences and engineering.
This book discusses the security issues in a wide range of wireless devices and systems, such as RFID, Bluetooth, ZigBee, GSM, LTE, and GPS. It collects the findings of recent research by the UnicornTeam at 360 Technology, and reviews the state-of-the-art literature on wireless security. The book also offers detailed case studies and theoretical treatments - specifically it lists numerous laboratory procedures, results, plots, commands and screenshots from real-world experiments. It is a valuable reference guide for practitioners and researchers who want to learn more about the advanced research findings and use the off-the-shelf tools to explore the wireless world.
This book discusses link-state routing protocols (OSPF and IS-IS), and the path-vector routing protocol (BGP). It covers their most identifying characteristics, operations, and the databases they maintain. Material is presented from a practicing engineer's perspective, linking theory and fundamental concepts to common practices and real-world examples. Every aspect of the book is written to reflect current best practices using real-world examples. The book begins with a detailed description of the OSPF area types and hierarchical routing, and the different types of routers used in an OSPF autonomous system. The author goes on to describe in detail the different OSPF packet types, and inbound and outbound processing of OSPF link-state advertisements (LSAs). Next, the book gives an overview of the main features of IS-IS. The author then discusses the two-level routing hierarchy for controlling the distribution of intra-domain (Level 1) and inter-domain (Level 2) routing information within an IS-IS routing domain. He then describes in detail IS-IS network address formats, IS-IS routing metrics, IS-IS packet types, IS-IS network types and adjacency formation, IS-IS LSDB and synchronization, and IS-IS authentication. The book then reviews the main concepts of path-vector routing protocols, and describes BGP packet types, BGP session states and Finite State Machine, BGP path attributes types, and BGP Autonomous System Numbers (ASNs). Focuses solely on link-state routing protocols (OSPF and IS-IS), and the only path-vector routing protocol in use today (BGP). Reviews the basic concepts underlying the design of IS-IS and provides a detailed description of IS-IS area types and hierarchical routing, and the different types of routers used by IS-IS. Discusses the two-level routing hierarchy for controlling the distribution of intra-domain (Level 1) and inter-domain (Level 2) routing information within an IS-IS routing domain. Describes in detail BGP packet types, BGP session states and Finite State Machine, BGP path attributes types, and BGP ASNs, includes a high-level view of the typical BGP router and its components, and inbound and outbound message processing. James Aweya, PhD, is a chief research scientist at the Etisalat British Telecom Innovation Center (EBTIC), Khalifa University, Abu Dhabi, UAE. He has authored four books including this book and is a senior member of the Institute of Electrical and Electronics Engineers (IEEE).
This book focuses on the fundamental concepts of IP routing and distance-vector routing protocols (RIPv2 and EIGRP). It discusses routing protocols from a practicing engineer's perspective, linking theory and fundamental concepts to common practices and everyday examples. The book benefits and reflects the author's more than 22 years of designing and working with IP routing devices and protocols (and Telecoms systems, in general). Every aspect of the book is written to reflect current best practices using real-world examples. This book describes the various methods used by routers to learn routing information. The author includes discussion of the characteristics of the different dynamic routing protocols, and how they differ in design and operation. He explains the processing steps involved in forwarding IP packets through an IP router to their destination and discusses the various mechanisms IP routers use for controlling routing in networks. The discussion is presented in a simple style to make it comprehensible and appealing to undergraduate and graduate level students, research and practicing engineers, scientists, IT personnel, and network engineers. It is geared toward readers who want to understand the concepts and theory of IP routing protocols, through real-world example systems and networks. Focuses on the fundamental concepts of IP routing and distance-vector routing protocols (RIPv2 and EIGRP). Describes the various methods used by routers to learn routing information. Includes discussion of the characteristics of the different dynamic routing protocols, and how they differ in design and operation. Provides detailed descriptions of the most common distance-vector routing protocols RIPv2 and EIGRP. Discusses the various mechanisms IP routers use for controlling routing in networks. James Aweya, PhD, is a chief research scientist at the Etisalat British Telecom Innovation Center (EBTIC), Khalifa University, Abu Dhabi, UAE. He has authored four books including this book and is a senior member of the Institute of Electrical and Electronics Engineers (IEEE).
In this multidisciplinary book, experts from around the globe examine how data-driven political campaigning works, what challenges it poses for personal privacy and democracy, and how emerging practices should be regulated. The rise of big data analytics in the political process has triggered official investigations in many countries around the world, and become the subject of broad and intense debate. Political parties increasingly rely on data analytics to profile the electorate and to target specific voter groups with individualised messages based on their demographic attributes. Political micro-targeting has become a major factor in modern campaigning, because of its potential to influence opinions, to mobilise supporters and to get out votes. The book explores the legal, philosophical and political dimensions of big data analytics in the electoral process. It demonstrates that the unregulated use of big personal data for political purposes not only infringes voters' privacy rights, but also has the potential to jeopardise the future of the democratic process, and proposes reforms to address the key regulatory and ethical questions arising from the mining, use and storage of massive amounts of voter data. Providing an interdisciplinary assessment of the use and regulation of big data in the political process, this book will appeal to scholars from law, political science, political philosophy and media studies, policy makers and anyone who cares about democracy in the age of data-driven political campaigning.
"High Performance Deformable Image Registration Algorithms for
Manycore Processors" develops highly data-parallel image
registration algorithms suitable for use on modern multi-core
architectures, including graphics processing units (GPUs). Focusing
on deformable registration, we show how to develop data-parallel
versions of the registration algorithm suitable for execution on
the GPU. Image registration is the process of aligning two or more
images into a common coordinate frame and is a fundamental step to
be able to compare or fuse data obtained from different sensor
measurements. Extracting useful information from 2D/3D data is
essential to realizing key technologies underlying our daily lives.
Examples include autonomous vehicles and humanoid robots that can
recognize and manipulate objects in cluttered environments using
stereo vision and laser sensing and medical imaging to localize and
diagnose tumors in internal organs using data captured by CT/MRI
scans. This book demonstrates: How to redesign widely used image registration algorithms so as to best expose the underlying parallelism available in these algorithmsHow to pose and implement the parallel versions of the algorithms within the single instruction, multiple data (SIMD) model supported by GPUsProgramming "tricks" that can help readers develop other image processing algorithms, including registration algorithms for the GPU
Soft computing techniques are no longer limited to the arena of computer science. The discipline has an exponentially growing demand in other branches of science and engineering and even into health and social science. This book contains theory and applications of soft computing in engineering, health, and social and applied sciences. Different soft computing techniques such as artificial neural networks, fuzzy systems, evolutionary algorithms and hybrid systems are discussed. It also contains important chapters in machine learning and clustering. This book presents a survey of the existing knowledge and also the current state of art development through original new contributions from the researchers. This book may be used as a one-stop reference book for a broad range of readers worldwide interested in soft computing. In each chapter, the preliminaries have been presented first and then the advanced discussion takes place. Learners and researchers from a wide variety of backgrounds will find several useful tools and techniques to develop their soft computing skills. This book is meant for graduate students, faculty and researchers willing to expand their knowledge in any branch of soft computing. The readers of this book will require minimum prerequisites of undergraduate studies in computation and mathematics.
This book provides a perspective on the application of machine learning-based methods in knowledge discovery from natural languages texts. By analysing various data sets, conclusions which are not normally evident, emerge and can be used for various purposes and applications. The book provides explanations of principles of time-proven machine learning algorithms applied in text mining together with step-by-step demonstrations of how to reveal the semantic contents in real-world datasets using the popular R-language with its implemented machine learning algorithms. The book is not only aimed at IT specialists, but is meant for a wider audience that needs to process big sets of text documents and has basic knowledge of the subject, e.g. e-mail service providers, online shoppers, librarians, etc. The book starts with an introduction to text-based natural language data processing and its goals and problems. It focuses on machine learning, presenting various algorithms with their use and possibilities, and reviews the positives and negatives. Beginning with the initial data pre-processing, a reader can follow the steps provided in the R-language including the subsuming of various available plug-ins into the resulting software tool. A big advantage is that R also contains many libraries implementing machine learning algorithms, so a reader can concentrate on the principal target without the need to implement the details of the algorithms her- or himself. To make sense of the results, the book also provides explanations of the algorithms, which supports the final evaluation and interpretation of the results. The examples are demonstrated using realworld data from commonly accessible Internet sources. |
![]() ![]() You may like...
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,898
Discovery Miles 58 980
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R4,186
Discovery Miles 41 860
Statistical Modeling, Analysis and…
Carlo Bertoluzza, Maria A. Gil, …
Hardcover
R3,059
Discovery Miles 30 590
Social Network Analytics for…
Himani Bansal, Gulshan Shrivastava, …
Hardcover
R5,815
Discovery Miles 58 150
|