![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General theory of computing > Data structures
This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding.
This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.
This book collects selected contributions presented at the INdAM Workshop "Geometric Challenges in Isogeometric Analysis", held in Rome, Italy on January 27-31, 2020. It gives an overview of the forefront research on splines and their efficient use in isogeometric methods for the discretization of differential problems over complex and trimmed geometries. A variety of research topics in this context are covered, including (i) high-quality spline surfaces on complex and trimmed geometries, (ii) construction and analysis of smooth spline spaces on unstructured meshes, (iii) numerical aspects and benchmarking of isogeometric discretizations on unstructured meshes, meshing strategies and software. Given its scope, the book will be of interest to both researchers and graduate students working in the areas of approximation theory, geometric design and numerical simulation. Chapter 10 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Originally published in 1995, Large Deviations for Performance Analysis consists of two synergistic parts. The first half develops the theory of large deviations from the beginning, through recent results on the theory for processes with boundaries, keeping to a very narrow path: continuous-time, discrete-state processes. By developing only what is needed for the applications, the theory is kept to a manageable level, both in terms of length and in terms of difficulty. Within its scope, the treatment is detailed, comprehensive and self-contained. As the book shows, there are sufficiently many interesting applications of jump Markov processes to warrant a special treatment. The second half is a collection of applications developed at Bell Laboratories. The applications cover large areas of the theory of communication networks: circuit switched transmission, packet transmission, multiple access channels, and the M/M/1 queue. Aspects of parallel computation are covered as well including, basics of job allocation, rollback-based parallel simulation, assorted priority queueing models that might be used in performance models of various computer architectures, and asymptotic coupling of processors. These applications are thoroughly analysed using the tools developed in the first half of the book.
'The book under review is an interesting elaboration that fills the gaps in libraries for concisely written and student-friendly books about essentials in computer science ... I recommend this book for anyone who would like to study algorithms, learn a lot about computer science or simply would like to deepen their knowledge ... The book is written in very simple English and can be understood even by those with limited knowledge of the English language. It should be emphasized that, despite the fact that the book consists of many examples, mathematical formulas and theorems, it is very hard to find any mistakes, errors or typos.'zbMATHIn computer science, an algorithm is an unambiguous specification of how to solve a class of problems. Algorithms can perform calculation, data processing and automated reasoning tasks.As an effective method, an algorithm can be expressed within a finite amount of space and time and in a well-defined formal language for calculating a function. Starting from an initial state and initial input (perhaps empty), the instructions describe a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing 'output' and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.This book introduces a set of concepts in solving problems computationally such as Growth of Functions; Backtracking; Divide and Conquer; Greedy Algorithms; Dynamic Programming; Elementary Graph Algorithms; Minimal Spanning Tree; Single-Source Shortest Paths; All Pairs Shortest Paths; Flow Networks; Polynomial Multiplication, to ways of solving NP-Complete Problems, supported with comprehensive, and detailed problems and solutions, making it an ideal resource to those studying computer science, computer engineering and information technology.
In recent years game theory has had a substantial impact on computer science, especially on Internet- and e-commerce-related issues. Algorithmic Game Theory, first published in 2007, develops the central ideas and results of this exciting area in a clear and succinct manner. More than 40 of the top researchers in this field have written chapters that go from the foundations to the state of the art. Basic chapters on algorithmic methods for equilibria, mechanism design and combinatorial auctions are followed by chapters on important game theory applications such as incentives and pricing, cost sharing, information markets and cryptography and security. This definitive work will set the tone of research for the next few years and beyond. Students, researchers, and practitioners alike need to learn more about these fascinating theoretical developments and their widespread practical application.
This practically-focused study guide introduces the fundamentals of discrete mathematics through an extensive set of classroom-tested problems. Each chapter presents a concise introduction to the relevant theory, followed by a detailed account of common challenges and methods for overcoming these. The reader is then encouraged to practice solving such problems for themselves, by tackling a varied selection of questions and assignments of different levels of complexity. This updated second edition now covers the design and analysis of algorithms using Python, and features more than 50 new problems, complete with solutions. Topics and features: provides a substantial collection of problems and examples of varying levels of difficulty, suitable for both laboratory practical training and self-study; offers detailed solutions to each problem, applying commonly-used methods and computational schemes; introduces the fundamentals of mathematical logic, the theory of algorithms, Boolean algebra, graph theory, sets, relations, functions, and combinatorics; presents more advanced material on the design and analysis of algorithms, including Turing machines, asymptotic analysis, and parallel algorithms; includes reference lists of trigonometric and finite summation formulae in an appendix, together with basic rules for differential and integral calculus. This hands-on workbook is an invaluable resource for undergraduate students of computer science, informatics, and electronic engineering. Suitable for use in a one- or two-semester course on discrete mathematics, the text emphasizes the skills required to develop and implement an algorithm in a specific programming language.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Computational Complexity of Counting and Sampling provides readers with comprehensive and detailed coverage of the subject of computational complexity. It is primarily geared toward researchers in enumerative combinatorics, discrete mathematics, and theoretical computer science. The book covers the following topics: Counting and sampling problems that are solvable in polynomial running time, including holographic algorithms; #P-complete counting problems; and approximation algorithms for counting and sampling. First, it opens with the basics, such as the theoretical computer science background and dynamic programming algorithms. Later, the book expands its scope to focus on advanced topics, like stochastic approximations of counting discrete mathematical objects and holographic algorithms. After finishing the book, readers will agree that the subject is well covered, as the book starts with the basics and gradually explores the more complex aspects of the topic. Features: Each chapter includes exercises and solutions Ideally written for researchers and scientists Covers all aspects of the topic, beginning with a solid introduction, before shifting to computational complexity's more advanced features, with a focus on counting and sampling
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.
Whether you are a computer programming student, hobbyist or professional, Lambert's FUNDAMENTALS OF PYTHON (TM): DATA STRUCTURES, 2E offers the perfect introduction to object-oriented design and data structures using the popular Python (TM) programming language. The level of instruction is ideal if you've had at least one semester of programming experience in an object-oriented language, such as Java (TM), C++ or Python (TM). Step-by-step explanations and focused exercises clearly explain the design of collection classes with polymorphism and inheritance and multiple implementations of collection interfaces. This edition also addresses the analysis of the space/time tradeoffs of different collection implementations and, specifically, array-based implementations and link-based implementations. You learn to work with collections, including sets, lists, stacks, queues, trees, dictionaries and graphs. Prepare for success with FUNDAMENTALS OF PYTHON (TM): DATA STRUCTURES, 2E.
This book gathers selected papers presented at the International Conference on Advancements in Computing and Management (ICACM 2019). Discussing current research in the field of artificial intelligence and machine learning, cloud computing, recent trends in security, natural language processing and machine translation, parallel and distributed algorithms, as well as pattern recognition and analysis, it is a valuable resource for academics, practitioners in industry and decision-makers.
Reservoir operation is a multi-objective optimization problem, and is traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses. It can additionally handle dense and irregular variable discretization. All algorithms are coded in Java and were tested on the case study of the Knezevo reservoir in the Republic of Macedonia. Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform. This thesis contributes with new and more powerful algorithms for an optimal reservoir operation and cloud application platform. All source codes are available for public use and can be used by researchers and practitioners to further advance the mentioned areas.
Teaching quantum computation and information is notoriously difficult, because it requires covering subjects from various fields of science, organizing these subjects consistently in a unified way despite their tendency to favor their specific languages, and overcoming the subjects' abstract and theoretical natures, which offer few examples of actual realizations. In this book, we have organized all the subjects required to understand the principles of quantum computation and information processing in a manner suited to physics, mathematics, and engineering courses as early as undergraduate studies.In addition, we provide a supporting package of quantum simulation software from Wolfram Mathematica, specialists in symbolic calculation software. Throughout the book's main text, demonstrations are provided that use the software package, allowing the students to deepen their understanding of each subject through self-practice. Readers can change the code so as to experiment with their own ideas and contemplate possible applications. The information in this book reflects many years of experience teaching quantum computation and information. The quantum simulation-based demonstrations and the unified organization of the subjects are both time-tested and have received very positive responses from the students who have experienced them.
A metaheuristic is a higher-level procedure designed to select a partial search algorithm that may lead to a good solution to an optimization problem, especially with incomplete or imperfect information.This unique compendium focuses on the insights of hybrid metaheuristics. It illustrates the recent researches on evolving novel hybrid metaheuristic algorithms, and prominently highlights its diverse application areas. As such, the book helps readers to grasp the essentials of hybrid metaheuristics and to address real world problems.The must-have volume serves as an inspiring read for professionals, researchers, academics and graduate students in the fields of artificial intelligence, robotics and machine learning.Related Link(s)
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming. Principles and Modeling Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields. Formalism and AlgorithmsThe third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems. FAQsAlong with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability. The First Steps toward a Bayesian ComputerA new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.
Provides detailed introduction to Internet of Healthcare Things (IoHT) and its applications Reviews underlying sensor and hardware technologies Includes recent advances in the IoHT such as remote healthcare monitoring and wearable devices Explores applications of Data Analytics/Data Mining in IoHT, including data management and data governance Focusses on regulatory and compliance issues in IoHT
Crossing Numbers of Graphs is the first book devoted to the crossing number, an increasingly popular object of study with surprising connections. The field has matured into a large body of work, which includes identifiable core results and techniques. The book presents a wide variety of ideas and techniques in topological graph theory, discrete geometry, and computer science. The first part of the text deals with traditional crossing number, crossing number values, crossing lemma, related parameters, computational complexity, and algorithms. The second part includes the rich history of alternative crossing numbers, the rectilinear crossing number, the pair crossing number, and the independent odd crossing number.It also includes applications of the crossing number outside topological graph theory. Aimed at graduate students and professionals in both mathematics and computer science The first book of its kind devoted to the topic Authored by a noted authority in crossing numbers
A Concise Introduction to Programming in Python, Second Edition provides a hands-on and accessible introduction to writing software in Python, with no prior programming experience required. The Second Edition was thoroughly reorganized and rewritten based on classroom experience to incorporate: A spiral approach, starting with turtle graphics, and then revisiting concepts in greater depth using numeric, textual, and image data Clear, concise explanations written for beginning students, emphasizing core principles A variety of accessible examples, focusing on key concepts Diagrams to help visualize new concepts New sections on recursion and exception handling, as well as an earlier introduction of lists, based on instructor feedback The text offers sections designed for approximately one class period each, and proceeds gradually from procedural to object-oriented design. Examples, exercises, and projects are included from diverse application domains, including finance, biology, image processing, and textual analysis. It also includes a brief "How-To" sections that introduce optional topics students may be interested in exploring. The text is written to be read, making it a good fit in flipped classrooms. Designed for either classroom use or self-study, all example programs and solutions to odd-numbered exercises (except for projects) are available at: http://www.central.edu/go/conciseintro/.
This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms. The book is organized as follows: Chapter 1 starts by providing a general background of the big data phenomenon and a general introduction to the Apache Giraph system, its abstraction, programming model and design architecture. Next, chapter 2 focuses on Giraph as a platform and how to use it. Based on a sample job, even more advanced topics like monitoring the Giraph application lifecycle and different methods for monitoring Giraph jobs are explained. Chapter 3 then provides an introduction to Giraph programming, introduces the basic Giraph graph model and explains how to write Giraph programs. In turn, Chapter 4 discusses in detail the implementation of some popular graph algorithms including PageRank, connected components, shortest paths and triangle closing. Chapter 5 focuses on advanced Giraph programming, discussing common Giraph algorithmic optimizations, tunable Giraph configurations that determine the system's utilization of the underlying resources, and how to write a custom graph input and output format. Lastly, chapter 6 highlights two systems that have been introduced to tackle the challenge of large scale graph processing, GraphX and GraphLab, and explains the main commonalities and differences between these systems and Apache Giraph. This book serves as an essential reference guide for students, researchers and practitioners in the domain of large scale graph processing. It offers step-by-step guidance, with several code examples and the complete source code available in the related github repository. Students will find a comprehensive introduction to and hands-on practice with tackling large scale graph processing problems using the Apache Giraph system, while researchers will discover thorough coverage of the emerging and ongoing advancements in big graph processing systems.
This book presents a consolidated survey of the vibrant field of research known as the theory of semi-feasible algorithms. This research stream perfectly showcases the richness of, and contrasts between, the central notions of complexity: running time, nonuniform complexity, lowness, and NP-hardness. Research into semi-feasible computation has already developed a rich set of tools, yet is young enough to have an abundance of fresh, open issues. Being essentially self-contained, the book requires neither great mathematical maturity nor an extensive background in computational complexity theory or in computer science in general. Newcomers are introduced to the field systematically and guided to the frontiers of current research. Researchers already active in the field will appreciate the book as a valuable source of reference.
The field of evolutionary computation is expanding dramatically, fueled by the vast investment that reflects the value of applying its techniques. Culling material from the Handbook of Evolutionary Computation, Evolutionary Computation 1: Basic Algorithms and Operators contains up-to-date information on algorithms and operators used in evolutionary computing. This volume discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is intended to be used by individual researchers, teachers, and students working and studying in this expanding field.
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award.
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award. |
You may like...
Concept Parsing Algorithms (CPA) for…
Uri Shafrir, Masha Etkind
Hardcover
R3,276
Discovery Miles 32 760
Comprehensive Metaheuristics…
S. Ali Mirjalili, Amir Hossein Gandomi
Paperback
R3,956
Discovery Miles 39 560
|