![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Data structures
This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data.
Anyone browsing at the stationery store will see an incredible array of pop-up cards available for any occasion. The workings of pop-up cards and pop-up books can be remarkably intricate. Behind such designs lies beautiful geometry involving the intersection of circles, cones, and spheres, the movements of linkages, and other constructions. The geometry can be modelled by algebraic equations, whose solutions explain the dynamics. For example, several pop-up motions rely on the intersection of three spheres, a computation made every second for GPS location. Connecting the motions of the card structures with the algebra and geometry reveals abstract mathematics performing tangible calculations. Beginning with the nephroid in the 19th-century, the mathematics of pop-up design is now at the frontiers of rigid origami and algorithmic computational complexity. All topics are accessible to those familiar with high-school mathematics; no calculus required. Explanations are supplemented by 140+ figures and 20 animations.
Automatic Differentiation (AD) is a maturing computational technology and has become a mainstream tool used by practicing scientists and computer engineers. The rapid advance of hardware computing power and AD tools has enabled practitioners to quickly generate derivative-enhanced versions of their code for a broad range of applications in applied research and development. "Automatic Differentiation of Algorithms" provides a comprehensive and authoritative survey of all recent developments, new techniques, and tools for AD use. The book covers all aspects of the subject: mathematics, scientific programming ( i.e., use of adjoints in optimization) and implementation (i.e., memory management problems). A strong theme of the book is the relationships between AD tools and other software tools, such as compilers and parallelizers. A rich variety of significant applications are presented as well, including optimum-shape design problems, for which AD offers more efficient tools and techniques. Topics and features: * helpful introductory AD survey chapter for brief overview of the field *extensive applications chapters, i.e., for circuit simulation, optimization and optimal-control shape design, structural mechanics, and multibody dynamical systems modeling *comprehensive bibliography for all current literature and results for the field *performance issues *optimal control sensitivity analysis *AD use with object oriented software tool kits The book is an ideal and accessible survey of recent developments and applications of AD tools and techniques for a broad scientific computing and computer engineering readership. Practitioners, professionals, and advanced graduates working in AD development will find the book a useful reference and essential resource for their work.
This book is for anyone who wants to gain an understanding of Blockchain technology and its potential. The book is research-oriented and covers different verticals of Blockchain technology. It discusses the characteristics and features of Blockchain, includes techniques, challenges, and future trends, along with case studies for deeper understanding. Blockchain Technology: Exploring Opportunities, Challenges, and Applications covers the core concepts related to Blockchain technology starting from scratch. The algorithms, concepts, and application areas are discussed according to current market trends and industry needs. It presents different application areas of industry and academia and discusses the characteristics and features of this technology. It also explores the challenges and future trends and provides an understanding of new opportunities. This book is for anyone at the beginner to intermediate level that wants to learn about the core concepts related to Blockchain technology.
Introducing strong foundations to practical Cyber-Physical Systems Leveraging CPS for pandemic affected society Ensuring Secured and Privacy aware CPS for Sensitive Data in a pandemic situation Providing methodologies to deploy CPS in industries affect by a pandemic
Crypto-Finance, Law and Regulation investigates whether crypto-finance will cause a paradigm shift in regulation from a centralised model to a model based on distributed consensus. This book explores the emergence of a decentralised and disintermediated crypto-market and investigates the way in which it can transform the financial markets. It examines three components of the financial market - technology, finance, and the law - and shows how their interrelationship dictates the structure of a crypto-market. It focuses on regulators' enforcement policies and their jurisdiction over crypto-finance operators and participants. The book also discusses the latest developments in crypto-finance, and the advantages and disadvantages of crypto-currency as an alternative payment product. It also investigates how such a decentralised crypto-finance system can provide access to finance, promote a shared economy, and allow access to justice. By exploring the law, regulation and governance of crypto-finance from a national, regional and global viewpoint, the book provides a fascinating and comprehensive overview of this important topic and will appeal to students, scholars and practitioners interested in regulation, finance and the law.
Nature-based algorithms play an important role among artificial intelligence algorithms. Among them are global optimization algorithms called swarm intelligence algorithms. These algorithms that use the behavior of simple agents and various ways of cooperation between them, are used to solve specific problems that are defined by the so-called objective function. Swarm intelligence algorithms are inspired by the social behavior of various animal species, e.g. ant colonies, bird flocks, bee swarms, schools of fish, etc. The family of these algorithms is very large and additionally includes various types of modifications to enable swarm intelligence algorithms to solve problems dealing with areas other than those for which they were originally developed. This book presents 24 swarm algorithms together with their modifications and practical applications. Each chapter is devoted to one algorithm. It contains a short description along with a pseudo-code showing the various stages of its operation. In addition, each chapter contains a description of selected modifications of the algorithm and shows how it can be used to solve a selected practical problem. This book should also be useful for undergraduate and postgraduate students studying nature-based optimization algorithms, and can be a helpful tool for learning these algorithms, along with their modifications and practical applications. In addition, it can be a useful source of knowledge for scientists working in the field of artificial intelligence, as well as for engineers interested in using this type of algorithms in their work. If the reader wishes to expand his knowledge beyond the basics of swarm intelligence algorithms presented in this book and is interested in more detailed information, we recommend the book "Swarm Intelligence Algorithms: A Tutorial" (Edited by A. Slowik, CRC Press, 2020). It contains a detailed explanation of how each algorithm works, along with relevant program codes in Matlab and the C ++ programming language, as well as numerical examples illustrating step-by-step how individual algorithms work.
Do you have creative ideas that you wish you could transform into code? Do you want to boost your problem solving and logic skills? Do you want to enhance your career by adopting an algorithmic mindset? In our increasingly digital world, coding is an essential skill. Communicating an algorithm to a machine to perform a set of tasks is vital. Beginner's Guide to Code Algorithms: Experiments to Enhance Productivity and Solve Problems written by Deepankar Maitra teaches you how to think like a programmer. The author unravels the secret behind writing code - building a good algorithm. Algorithmic thinking leads to asking the right question and enables a shift from issue resolution to value creation. Having this mindset will make you more marketable to employers. This book takes you on a problem-solving journey to expand your mind and increase your willingness to experiment with code. You will: Learn the art of building an algorithm through hands-on exercises Understand how to develop code for inspiring productivity concepts Build a mentality of developing algorithms to solve problems Develop, test, review, and improve code through guided experimentation This book is designed to develop a culture of logical thinking through intellectual stimulation. It will benefit students and teachers of programming, business professionals, as well as experienced users of Microsoft Excel who wish to become proficient with macros.
This volume contains the texts of the principal survey papers presented at ALGORITHMS -and ORDER, held. at Ottawa, Canada from June 1 to June 12, 1987. The conference was supported by grants from the N.A.T.O. Advanced Study Institute programme, the University of Ottawa, and the Natural Sciences and Engineering Research Council of Canada. We are grateful for this considerable support. Over fifty years ago, the Symposium on Lattice Theory, in Charlottesville, U.S.A., proclaimed the vitality of ordered sets. Only twenty years later the Symposium on Partially Ordered Sets and Lattice Theory, held at Monterey, U.S.A., had solved many of the problems that had been originally posed. In 1981, the Symposium on Ordered Sets held at Banff, Canada, continued this tradition. It was marked by a landmark volume containing twenty-three articles on almost all current topics in the theory of ordered sets and its applications. Three years after, Graphs and Orders, also held at Banff, Canada, aimed to document the role of graphs in the theory of ordered sets and its applications. Because of its special place in the landscape of the mathematical sciences order is especially sensitive to new trends and developments. Today, the most important current in the theory and application of order springs from theoretical computer seience. Two themes of computer science lead the way. The first is data structure. Order is common to data structures."
This book proposes tools for analysis of multidimensional and metric data, by establishing a state-of-the-art of the existing solutions and developing new ones. It mainly focuses on visual exploration of these data by a human analyst, relying on a 2D or 3D scatter plot display obtained through Dimensionality Reduction. Performing diagnosis of an energy system requires identifying relations between observed monitoring variables and the associated internal state of the system. Dimensionality reduction, which allows to represent visually a multidimensional dataset, constitutes a promising tool to help domain experts to analyse these relations. This book reviews existing techniques for visual data exploration and dimensionality reduction such as tSNE and Isomap, and proposes new solutions to challenges in that field. In particular, it presents the new unsupervised technique ASKI and the supervised methods ClassNeRV and ClassJSE. Moreover, MING, a new approach for local map quality evaluation is also introduced. These methods are then applied to the representation of expert-designed fault indicators for smart-buildings, I-V curves for photovoltaic systems and acoustic signals for Li-ion batteries.
Provides a comprehensive introduction to multi-robot systems planning and task allocation; Explores multi robot aerial planning, flight planning, orienteering and coverage, and deployment, patrolling, and foraging; Includes real-world case studies; Treats different aspects of cooperation in multi-agent systems.
The detailed survey on constraint handling techniques specifically penalty function approach is presented in the book; presents the Cohort Intelligence (CI) algorithm incorporated with a novel self-adaptive penalty function (SAPF) approach which helped in avoiding preliminary trials of selecting penalty parameter. The approach is referred to as CI-SAPF; CI-SAPF is further hybridized with Colliding Bodies Optimization (CBO) algorithm to promote a parameter less metaheuristic algorithm; presents solutions to several problems from discrete truss structure domain, mixed variable design engineering domain, and linear & nonlinear domain validating the CI-SAPF and CI-SAPF-CBO; behavior of SAPF approach on pseudo objective function, constraint violations, penalty function and penalty parameter have been analyzed and discussed in very detail; presents the in-depth analysis and comparison of the CI-SAPF, CI-SAPF-CBO and CBO algorithms with other contemporary techniques; provides the solution to real-world manufacturing problems of optimizing multi pass milling and turning processes using CI-SPF, CI-SAPF and CI-SAPF-CBO approaches.
Provides a comprehensive review on new swarm intelligence Offers practical implementation of PSO with MATLAB code Presents statistical analysis techniques so that researchers can analyze their own experiment design Discusses swarm intelligence algorithms in social sector and oil and gas industries Covers recent findings and the implementation techniques to Machine Learning
This book is a unique and note-worthy enquiry into the implications of algorithmic knowledge for human subjectivity Eran Fisher provides timely insight on a relevant field of research, i.e., how algorithms impact our society This book will make a timely contribution to the social study of algorithms and will prove especially valuable for scholars working at the intersections of media and communication studies, internet studies, information studies, the sociology of technology, the philosophy of technology, and science and technology studies
1) Focuses on the concepts and implementation strategies of various Deep Learning algorithms through properly curated examples. 2) The subject area will be valid for the next 10 years or so, as Deep Learning theory/algorithms and their applications will not be outdated easily. Hence there will be demand for such a book in the market. 3) In comparison to other titles, this book rigorously covers mathematical and conceptual details of relevant topics.
This book concentrates on mining networks, a subfield within data science. Data science uses scientific and computational tools to extract valuable knowledge from large data sets. Once data is processed and cleaned, it is analyzed and presented to support decision-making processes. Data science and machine learning tools have become widely used in companies of all sizes. Networks are often large-scale, decentralized, and evolve dynamically over time. Mining complex networks aim to understand the principles governing the organization and the behavior of such networks is crucial for a broad range of fields of study. Here are a few selected typical applications of mining networks: Community detection (which users on some social media platforms are close friends). Link prediction (who is likely to connect to whom on such platforms). Node attribute prediction (what advertisement should be shown to a given user of a particular platform to match their interests). Influential node detection (which social media users would be the best ambassadors of a specific product). This textbook is suitable for an upper-year undergraduate course or a graduate course in programs such as data science, mathematics, computer science, business, engineering, physics, statistics, and social science. This book can be successfully used by all enthusiasts of data science at various levels of sophistication to expand their knowledge or consider changing their career path. Jupiter notebooks (in Python and Julia) accompany the book and can be accessed on https://www.ryerson.ca/mining-complex-networks/. These not only contain all the experiments presented in the book, but also include additional material. Bogumil Kaminski is the Chairman of the Scientific Council for the Discipline of Economics and Finance at SGH Warsaw School of Economics. He is also an Adjunct Professor at the Data Science Laboratory at Ryerson University. Bogumil is an expert in applications of mathematical modeling to solving complex real-life problems. He is also a substantial open-source contributor to the development of the Julia language and its package ecosystem. Pawel Pralat is a Professor of Mathematics in Ryerson University, whose main research interests are in random graph theory, especially in modeling and mining complex networks. He is the Director of Fields-CQAM Lab on Computational Methods in Industrial Mathematics in The Fields Institute for Research in Mathematical Sciences and has pursued collaborations with various industry partners as well as the Government of Canada. He has written over 170 papers and three books with 130 plus collaborators. Francois Theberge holds a B.Sc. degree in applied mathematics from the University of Ottawa, a M.Sc. in telecommunications from INRS and a PhD in electrical engineering from McGill University. He has been employed by the Government of Canada since 1996 where he was involved in the creation of the data science team as well as the research group now known as the Tutte Institute for Mathematics and Computing. He also holds an adjunct professorial position in the Department of Mathematics and Statistics at the University of Ottawa. His current interests include relational-data mining and deep learning.
Modelling Transitions shows what computational, formal and data-driven approaches can and could mean for sustainability transitions research, presenting the state-of-the-art and exploring what lies beyond. Featuring contributions from many well-known authors, this book presents the various benefits of modelling for transitions research. More than just taking stock, it also critically examines what modelling of transformative change means and could mean for transitions research and for other disciplines that study societal changes. This includes identifying a variety of approaches currently not part of the portfolios of transitions modellers. Far from only singing praise, critical methodological and philosophical introspection are key aspects of this important book. This book speaks to modellers and non-modellers alike who value the development of robust knowledge on transitions to sustainability, including colleagues in congenial fields. Be they students, researchers or practitioners, everyone interested in transitions should find this book relevant as reference, resource and guide.
This book "Advanced Applications of Computational Mathematics" covers multidisciplinary studies containing advanced research in the field of computational and applied mathematics. The book includes research methodology, techniques, applications, and algorithms. The book will be very useful to advanced students, researchers and practitioners who are involved in the areas of computational and applied mathematics and engineering.
Covers deep learning fundamentals; Focuses on applications; Covers human emotion analysis and deep learning; Explains how to use web based techniques for deep learning applications; Includes coverage of autonomous vehicles and deep learning
Presents original method of enhanced ant colony optimization in feature selection, based on mathematical experiments and modelling. Provides a theoretical concept in iris features searching and detection as part of feature extraction process. Demonstrates the iris features selection and detection using the proposed design methodology with enhanced ant colony optimization for iris recognition.
Resolves linear and non-linear data structures in C language using the algorithm, diagrammatically and its time and space complexity analysis. Covers interview questions and MCQs on all topics of campus readiness Identifies possible solutions to each problem. Includes real life and computational applications of linear and non-linear data structures
Multiagent systems (MAS) are one of the most exciting and the fastest growing domains in the intelligent resource management and agent-oriented technology, which deals with modeling of autonomous decisions making entities. Recent developments have produced very encouraging results in the novel approach of handling multiplayer interactive systems. In particular, the multiagent system approach is adapted to model, control, manage or test the operations and management of several system applications including multi-vehicles, microgrids, multi-robots, where agents represent individual entities in the network. Each participant is modeled as an autonomous participant with independent strategies and responses to outcomes. They are able to operate autonomously and interact pro-actively with their environment. In recent works, the problem of information consensus is addressed, where a team of vehicles communicate with each other to agree on key pieces of information that enable them to work together in a coordinated fashion. The problem is challenging because communication channels have limited range and there are possibilities of fading and dropout. The book comprises chapters on synchronization and consensus in multiagent systems. It shows that the joint presentation of synchronization and consensus enables readers to learn about similarities and differences of both concepts. It reviews the cooperative control of multi-agent dynamical systems interconnected by a communication network topology. Using the terminology of cooperative control, each system is endowed with its own state variable and dynamics. A fundamental problem in multi-agent dynamical systems on networks is the design of distributed protocols that guarantee consensus or synchronization in the sense that the states of all the systems reach the same value. It is evident from the results that research in multiagent systems offer opportunities for further developments in theoretical, simulation and implementations. This book attempts to fill this gap and aims at presenting a comprehensive volume that documents theoretical aspects and practical applications.
the handbook is a valuable reference to researchers from industry and academia, as well as Masters and PhD students around the globe working in the metaheuristics and applications domain includes contributions from a variety of academics/researchers in the field of metaheuristics |
![]() ![]() You may like...
Court Interpreters and Fair Trials
John Henry Dingfelder Stone
Hardcover
R4,375
Discovery Miles 43 750
Exam Ref 70-698 Installing and…
Andrew Bettany, Andrew Warren
Paperback
Topics in Numerical Partial Differential…
Susanne C. Brenner
Hardcover
R3,485
Discovery Miles 34 850
Accuracy Verification Methods - Theory…
Olli Mali, Pekka Neittaanmaki, …
Hardcover
R3,696
Discovery Miles 36 960
ELECTRIMACS 2019 - Selected Papers…
Walter Zamboni, Giovanni Petrone
Hardcover
R4,517
Discovery Miles 45 170
Model Reduction of Parametrized Systems
Peter Benner, Mario Ohlberger, …
Hardcover
R4,890
Discovery Miles 48 900
Foundation Models for Natural Language…
Gerhard PaaĆ, Sven Giesselbach
Hardcover
|