Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > General theory of computing > Data structures
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.
This thesis primarily focuses on how to carry out intelligent sensing and understand the high-dimensional and low-quality visual information. After exploring the inherent structures of the visual data, it proposes a number of computational models covering an extensive range of mathematical topics, including compressive sensing, graph theory, probabilistic learning and information theory. These computational models are also applied to address a number of real-world problems including biometric recognition, stereo signal reconstruction, natural scene parsing, and SAR image processing.
This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients: (a) the set of parameter choices considered by the advisor, and (b) an estimator of alignment accuracy used to rank alignments produced by the aligner. On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting. The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content * examines formulations of parameter advising and their computational complexity, * develops methods for learning good accuracy estimators, * presents approximation algorithms for finding good sets of parameter choices, and * assesses software implementations of advising that perform well on real biological data. Also explored are applications of parameter advising to * adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and * ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble. The book concludes by offering future directions in advising research.
This is an examination of the history and the state of the art of the quest for visualizing scientific knowledge and the dynamics of its development. Through an interdisciplinary perspective this book presents profound visions, pivotal advances, and insightful contributions made by generations of researchers and professionals, which portrays a holistic view of the underlying principles and mechanisms of the development of science. This updated and extended second edition: highlights the latest advances in mapping scientific frontiers examines the foundations of strategies, principles, and design patterns provides an integrated and holistic account of major developments across disciplinary boundaries "Anyone who tries to follow the exponential growth of the literature on citation analysis and scientometrics knows how difficult it is to keep pace. Chaomei Chen has identified the significant methods and applications in visual graphics and made them clear to the uninitiated. Derek Price would have loved this book which not only pays homage to him but also to the key players in information science and a wide variety of others in the sociology and history of science." - Eugene Garfield "This is a wide ranging book on information visualization, with a specific focus on science mapping. Science mapping is still in its infancy and many intellectual challenges remain to be investigated and many of which are outlined in the final chapter. In this new edition Chaomei Chen has provided an essential text, useful both as a primer for new entrants and as a comprehensive overview of recent developments for the seasoned practitioner." - Henry Small Chaomei Chen is a Professor in the College of Information Science and Technology at Drexel University, Philadelphia, USA, and a ChangJiang Scholar at Dalian University of Technology, Dalian, China. He is the Editor-in-Chief of Information Visualization and the author of Turning Points: The Nature of Creativity (Springer, 2012) and Information Visualization: Beyond the Horizon (Springer, 2004, 2006).
The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.
1) Provides a levelling approach, bringing students at all stages of programming experience to the same point 2) Focuses Python, a general language, to an engineering and scientific context 3) Uses a classroom tested, practical approach to teaching programming 4) Teaches students and professionals how to use Python to solve engineering calculations such as differential and algebraic equations
The research presented in this book discusses how to efficiently retrieve track and trace information for an item of interest that took a certain path through a complex network of manufacturers, wholesalers, retailers, and consumers. To this end, a super-ordinate system called "Discovery Service" is designed that has to handle large amounts of data, high insert-rates, and a high number of queries that are submitted to the discovery service. An example that is used throughout this book is the European pharmaceutical supply chain, which faces the challenge that more and more counterfeit medicinal products are being introduced. Between October and December 2008, more than 34 million fake drug pills were detected at customs control at the borders of the European Union. These fake drugs can put lives in danger as they were supposed to fight cancer, take effect as painkiller or antibiotics, among others. The concepts described in this book can be adopted for supply chain management use cases other than track and trace, such as recall, supply chain optimization, or supply chain analytics.
Recently many researchers are working on cluster analysis as a main tool for exploratory data analysis and data mining. A notable feature is that specialists in di?erent ?elds of sciences are considering the tool of data clustering to be useful. A major reason is that clustering algorithms and software are ?exible in thesensethatdi?erentmathematicalframeworksareemployedinthealgorithms and a user can select a suitable method according to his application. Moreover clusteringalgorithmshavedi?erentoutputsrangingfromtheolddendrogramsof agglomerativeclustering to more recent self-organizingmaps. Thus, a researcher or user can choose an appropriate output suited to his purpose, which is another ?exibility of the methods of clustering. An old and still most popular method is the K-means which use K cluster centers. A group of data is gathered around a cluster center and thus forms a cluster. The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies. A main reasonwhy we concentrate on fuzzy c-means is that most methodology and application studies infuzzy clusteringusefuzzy c-means, andfuzzy c-meansshouldbe consideredto beamajortechniqueofclusteringingeneral, regardlesswhetheroneisinterested in fuzzy methods or not. Moreover recent advances in clustering techniques are rapid and we requirea new textbook that includes recent algorithms.We should also note that several books have recently been published but the contents do not include some methods studied here
This edited volume focuses on the work of Professor Larisa Maksimova, providing a comprehensive account of her outstanding contributions to different branches of non-classical logic. The book covers themes ranging from rigorous implication, relevance and algebraic logic, to interpolation, definability and recognizability in superintuitionistic and modal logics. It features both her scientific autobiography and original contributions from experts in the field of non-classical logics. Professor Larisa Maksimova's influential work involved combining methods of algebraic and relational semantics. Readers will be able to trace both influences on her work, and the ways in which her work has influenced other logicians. In the historical part of this book, it is possible to trace important milestones in Maksimova's career. Early on, she developed an algebraic semantics for relevance logics and relational semantics for the logic of entailment. Later, Maksimova discovered that among the continuum of superintuitionisitc logics there are exactly three pretabular logics. She went on to obtain results on the decidability of tabularity and local tabularity problems for superintuitionistic logics and for extensions of S4. Further investigations by Maksimova were aimed at the study of fundamental properties of logical systems (different versions of interpolation and definability, disjunction property, etc.) in big classes of logics, and on decidability and recognizability of such properties. To this end she determined a powerful combination of algebraic and semantic methods, which essentially determine the modern state of investigations in the area, as can be seen in the later chapters of this book authored by leading experts in non-classical logics. These original contributions bring the reader up to date on the very latest work in this field.
This stimulating textbook presents a broad and accessible guide to the fundamentals of discrete mathematics, highlighting how the techniques may be applied to various exciting areas in computing. The text is designed to motivate and inspire the reader, encouraging further study in this important skill. Features: This book provides an introduction to the building blocks of discrete mathematics, including sets, relations and functions; describes the basics of number theory, the techniques of induction and recursion, and the applications of mathematical sequences, series, permutations, and combinations; presents the essentials of algebra; explains the fundamentals of automata theory, matrices, graph theory, cryptography, coding theory, language theory, and the concepts of computability and decidability; reviews the history of logic, discussing propositional and predicate logic, as well as advanced topics such as the nature of theorem proving; examines the field of software engineering, including software reliability and dependability and describes formal methods; investigates probability and statistics and presents an overview of operations research and financial mathematics.
This book aims to present the impact of Artificial Intelligence (AI) and Big Data in healthcare for medical decision making and data analysis in myriad fields including Radiology, Radiomics, Radiogenomics, Oncology, Pharmacology, COVID-19 prognosis, Cardiac imaging, Neuroradiology, Psychiatry and others. This will include topics such as Artificial Intelligence of Thing (AIOT), Explainable Artificial Intelligence (XAI), Distributed learning, Blockchain of Internet of Things (BIOT), Cybersecurity, and Internet of (Medical) Things (IoTs). Healthcare providers will learn how to leverage Big Data analytics and AI as methodology for accurate analysis based on their clinical data repositories and clinical decision support. The capacity to recognize patterns and transform large amounts of data into usable information for precision medicine assists healthcare professionals in achieving these objectives. Intelligent Health has the potential to monitor patients at risk with underlying conditions and track their progress during therapy. Some of the greatest challenges in using these technologies are based on legal and ethical concerns of using medical data and adequately representing and servicing disparate patient populations. One major potential benefit of this technology is to make health systems more sustainable and standardized. Privacy and data security, establishing protocols, appropriate governance, and improving technologies will be among the crucial priorities for Digital Transformation in Healthcare.
Protocols that remain zero-knowledge when many instances are executed concurrently are called concurrent zero-knowledge, and this book is devoted to their study. The book presents constructions of concurrent zero-knowledge protocols, along with proofs of security. It also shows why "traditional" proof techniques (i.e., black-box simulation) are not suitable for establishing the concurrent zero-knowledge property of "message-efficient" protocols.
The TransNav 2011 Symposium held at the Gdynia Maritime University, Poland in June 2011 has brought together a wide range of participants from all over the world. The program has offered a variety of contributions, allowing to look at many aspects of the navigational safety from various different points of view. Topics presented and discussed at the Symposium were: navigation, safety at sea, sea transportation, education of navigators and simulator-based training, sea traffic engineering, ship's manoeuvrability, integrated systems, electronic charts systems, satellite, radio-navigation and anti-collision systems and many others. This book is part of a series of six volumes and provides an overview of Methods and Algorithms in Navigation and is addressed to scientists and professionals involved in research and development of navigation, safety of navigation and sea transportation.
Dynamic logic (DL) recently had a highest impact on the development in several areas of modeling and algorithm design. The book discusses classical algorithms used for 30 to 50 years (where improvements are often measured by signal-to-clutter ratio), and also new areas, which did not previously exist. These achievements were recognized by National and International awards. Emerging areas include cognitive, emotional, intelligent systems, data mining, modeling of the mind, higher cognitive functions, evolution of languages and other. Classical areas include detection, recognition, tracking, fusion, prediction, inverse scattering, and financial prediction. All these classical areas are extended to using mixture models, which previously was considered unsolvable in most cases. Recent neuroimaging experiments proved that the brain-mind actually uses DL. Emotional Cognitive Neural Algorithms with Engineering Applications" is written for professional scientists and engineers developing computer and information systems, for professors teaching modeling and algorithms, and for students working on Masters and Ph.D. degrees in these areas. The book will be of interest to psychologists and neuroscientists interested in mathematical models of the brain and min das well. "
This book presents models and algorithms for complex scheduling problems. Besides resource-constrained project scheduling problems with applications also job-shop problems with flexible machines, transportation or limited buffers are discussed. Discrete optimization methods like linear and integer programming, constraint propagation techniques, shortest path and network flow algorithms, branch-and-bound methods, local search and genetic algorithms, and dynamic programming are presented. They are used in exact or heuristic procedures to solve the introduced complex scheduling problems. Furthermore, methods for calculating lower bounds are described. Most algorithms are formulated in detail and illustrated with examples. In this second edition some errors were corrected, some parts were explained in more detail, and new material has been added. In particular, further generalizations of the RCPSP, additional practical applications and some more algorithms were integrated.
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars' GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.
The advent of new architectures and computing platforms means that synchronization and concurrent computing are among the most important topics in computing science. Concurrent programs are made up of cooperating entities -- processors, processes, agents, peers, sensors -- and synchronization is the set of concepts, rules and mechanisms that allow them to coordinate their local computations in order to realize a common task. This book is devoted to the most difficult part of concurrent programming, namely synchronization concepts, techniques and principles when the cooperating entities are asynchronous, communicate through a shared memory, and may experience failures. Synchronization is no longer a set of tricks but, due to research results in recent decades, it relies today on sane scientific foundations as explained in this book. In this book the author explains synchronization and the implementation of concurrent objects, presenting in a uniform and comprehensive way the major theoretical and practical results of the past 30 years. Among the key features of the book are a new look at lock-based synchronization (mutual exclusion, semaphores, monitors, path expressions); an introduction to the atomicity consistency criterion and its properties and a specific chapter on transactional memory; an introduction to mutex-freedom and associated progress conditions such as obstruction-freedom and wait-freedom; a presentation of Lamport's hierarchy of safe, regular and atomic registers and associated wait-free constructions; a description of numerous wait-free constructions of concurrent objects (queues, stacks, weak counters, snapshot objects, renaming objects, etc.); a presentation of the computability power of concurrent objects including the notions of universal construction, consensus number and the associated Herlihy's hierarchy; and a survey of failure detector-based constructions of consensus objects. The book is suitable for advanced undergraduate students and graduate students in computer science or computer engineering, graduate students in mathematics interested in the foundations of process synchronization, and practitioners and engineers who need to produce correct concurrent software. The reader should have a basic knowledge of algorithms and operating systems.
The general theme of this conference is notations, methods, and tool support for the calculation of programs from specifications. The purpose of this working conference is to present the results of ongoing research, descriptions of existing and proposed systems, and applications to the production of practical software.
The architectural concept of a memory hierarchy has been immensely successful, making possible today's spectacular pace of technology evolution in both the volume of data and the speed of data access. Its success is difficult to understand, however, when examined within the traditional "memoryless" framework of performance analysis. The memoryless' framework cannot properly reflect a memory hierarchy's ability to take advantage of patterns of data use that are transient. The Fractal Structure of Data Reference: Applications to the Memory Hierarchy both introduces, and justifies empirically, an alternative modeling framework in which arrivals are driven by a statistically self-similar underlying process, and are transient in nature. The substance of this book comes from the ability of the model to impose a mathematically tractable structure on important problems involving the operation and performance of a memory hierarchy. It describes events as they play out at a wide range of time scales, from the operation of file buffers and storage control cache, to a statistical view of entire disk storage applications. Striking insights are obtained about how memory hierarchies work, and how to exploit them to best advantage. The emphasis is on the practical application of such results. The Fractal Structure of Data Reference: Applications to the Memory Hierarchy will be of interest to professionals working in the area of applied computer performance and capacity planning, particularly those with a focus on disk storage. The book is also an excellent reference for those interested in database and data structure research.
This book establishes the foundations needed to realize the ultimate goals for artificial intelligence, such as autonomy and trustworthiness. Aimed at scientists, researchers, technologists, practitioners, and students, it brings together contributions offering the basics, the challenges and the state-of-the-art on trusted autonomous systems in a single volume. The book is structured in three parts, with chapters written by eminent researchers and outstanding practitioners and users in the field. The first part covers foundational artificial intelligence technologies, while the second part covers philosophical, practical and technological perspectives on trust. Lastly, the third part presents advanced topics necessary to create future trusted autonomous systems. The book augments theory with real-world applications including cyber security, defence and space.
Focuses on the definition, engineering, and delivery of AI solutions as opposed to AI itself Reader will still gain a strong understanding of AI, but through the perspective of delivering real solutions Explores the core AI issues that impact the success of an overall solution including i. realities of dealing with data, ii. impact of AI accuracy on the ability of the solution to meet business objectives, iii. challenges in managing the quality of machine learning models Includes real world examples of enterprise scale solutions Provides a series of (optional) technical deep dives and thought experiments.
This book shares essential insights into how the social sciences and technology could foster new advances in managing the complexity inherent to the criminal and digital policing landscape. Said landscape is both dynamic and intricate, emanating as it does from crimes that are both persistent and transnational. Globalization, human and drug trafficking, cybercrime, terrorism, and other forms of transnational crime can have significant impacts on societies around the world. This necessitates a reassessment of what crime, national security and policing mean. Recent global events such as human and drug trafficking, the COVID-19 pandemic, violent protests, cyber threats and terrorist activities underscore the vulnerabilities of our current security and digital policing posture. This book presents concepts, theories and digital policing applications, offering a comprehensive analysis of current and emerging trends in digital policing. Pursuing an evidence-based approach, it offers an extraordinarily perceptive and detailed view of issues and solutions regarding the crime and digital policing landscape. To this end, it highlights current technological and methodological solutions as well as advances concerning integrated computational and analytical solutions deployed in digital policing. It also provides a comprehensive analysis of the technical, ethical, legal, privacy and civil liberty challenges stemming from the aforementioned advances in the field of digital policing; and accordingly, offers detailed recommendations supporting the design and implementation of best practices including technical, ethical and legal approaches when conducting digital policing. The research gathered here fits well into the larger body of work on various aspects of AI, cybersecurity, national security, digital forensics, cyberterrorism, ethics, human rights, cybercrime and law. It provides a valuable reference for law enforcement, policymakers, cybersecurity experts, digital forensic practitioners, researchers, graduates and advanced undergraduates, and other stakeholders with an interest in counter-terrorism. In addition to this target audience, it offers a valuable tool for lawyers, criminologist and technology enthusiasts.
Multiobjective Evolutionary Algorithms and Applications provides comprehensive treatment on the design of multiobjective evolutionary algorithms and their applications in domains covering areas such as control and scheduling. Emphasizing both the theoretical developments and the practical implementation of multiobjective evolutionary algorithms, a profound mathematical knowledge is not required. Written for a wide readership, engineers, researchers, senior undergraduates and graduate students interested in the field of evolutionary algorithms and multiobjective optimization with some basic knowledge of evolutionary computation will find this book a useful addition to their book case.
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization. |
You may like...
Strategic Management, Decision Theory…
Bikas Kumar Sinha, Srijib Bhusan Bagchi
Hardcover
R4,269
Discovery Miles 42 690
Data Science and Internet of Things…
Giancarlo Fortino, Antonio Liotta, …
Hardcover
R3,937
Discovery Miles 39 370
Functional Encryption
Khairol Amali Bin Ahmad, Khaleel Ahmad, …
Hardcover
R2,827
Discovery Miles 28 270
|