![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General theory of computing > Data structures
The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.
The research presented in this book discusses how to efficiently retrieve track and trace information for an item of interest that took a certain path through a complex network of manufacturers, wholesalers, retailers, and consumers. To this end, a super-ordinate system called "Discovery Service" is designed that has to handle large amounts of data, high insert-rates, and a high number of queries that are submitted to the discovery service. An example that is used throughout this book is the European pharmaceutical supply chain, which faces the challenge that more and more counterfeit medicinal products are being introduced. Between October and December 2008, more than 34 million fake drug pills were detected at customs control at the borders of the European Union. These fake drugs can put lives in danger as they were supposed to fight cancer, take effect as painkiller or antibiotics, among others. The concepts described in this book can be adopted for supply chain management use cases other than track and trace, such as recall, supply chain optimization, or supply chain analytics.
This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients: (a) the set of parameter choices considered by the advisor, and (b) an estimator of alignment accuracy used to rank alignments produced by the aligner. On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting. The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content * examines formulations of parameter advising and their computational complexity, * develops methods for learning good accuracy estimators, * presents approximation algorithms for finding good sets of parameter choices, and * assesses software implementations of advising that perform well on real biological data. Also explored are applications of parameter advising to * adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and * ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble. The book concludes by offering future directions in advising research.
Protocols that remain zero-knowledge when many instances are executed concurrently are called concurrent zero-knowledge, and this book is devoted to their study. The book presents constructions of concurrent zero-knowledge protocols, along with proofs of security. It also shows why "traditional" proof techniques (i.e., black-box simulation) are not suitable for establishing the concurrent zero-knowledge property of "message-efficient" protocols.
The TransNav 2011 Symposium held at the Gdynia Maritime University, Poland in June 2011 has brought together a wide range of participants from all over the world. The program has offered a variety of contributions, allowing to look at many aspects of the navigational safety from various different points of view. Topics presented and discussed at the Symposium were: navigation, safety at sea, sea transportation, education of navigators and simulator-based training, sea traffic engineering, ship's manoeuvrability, integrated systems, electronic charts systems, satellite, radio-navigation and anti-collision systems and many others. This book is part of a series of six volumes and provides an overview of Methods and Algorithms in Navigation and is addressed to scientists and professionals involved in research and development of navigation, safety of navigation and sea transportation.
The general theme of this conference is notations, methods, and tool support for the calculation of programs from specifications. The purpose of this working conference is to present the results of ongoing research, descriptions of existing and proposed systems, and applications to the production of practical software.
Dynamic logic (DL) recently had a highest impact on the development in several areas of modeling and algorithm design. The book discusses classical algorithms used for 30 to 50 years (where improvements are often measured by signal-to-clutter ratio), and also new areas, which did not previously exist. These achievements were recognized by National and International awards. Emerging areas include cognitive, emotional, intelligent systems, data mining, modeling of the mind, higher cognitive functions, evolution of languages and other. Classical areas include detection, recognition, tracking, fusion, prediction, inverse scattering, and financial prediction. All these classical areas are extended to using mixture models, which previously was considered unsolvable in most cases. Recent neuroimaging experiments proved that the brain-mind actually uses DL. Emotional Cognitive Neural Algorithms with Engineering Applications" is written for professional scientists and engineers developing computer and information systems, for professors teaching modeling and algorithms, and for students working on Masters and Ph.D. degrees in these areas. The book will be of interest to psychologists and neuroscientists interested in mathematical models of the brain and min das well. "
This title is a Pearson Global Edition. The Editorial team at Pearson has worked closely with educators around the world to include content which is especially relevant to students outside the United States. The Third Edition of Data Abstraction and Problem Solving with Java: Walls and Mirrors employs the analogies of Walls (data abstraction) and Mirrors (recursion) to teach Java programming design solutions, in a way that beginning students find accessible. The book has a student-friendly pedagogical approach that carefully accounts for the strengths and weaknesses of the Java language. With this book, students will gain a solid foundation in data abstraction, object-oriented programming, and other problem-solving techniques.
The architectural concept of a memory hierarchy has been immensely successful, making possible today's spectacular pace of technology evolution in both the volume of data and the speed of data access. Its success is difficult to understand, however, when examined within the traditional "memoryless" framework of performance analysis. The memoryless' framework cannot properly reflect a memory hierarchy's ability to take advantage of patterns of data use that are transient. The Fractal Structure of Data Reference: Applications to the Memory Hierarchy both introduces, and justifies empirically, an alternative modeling framework in which arrivals are driven by a statistically self-similar underlying process, and are transient in nature. The substance of this book comes from the ability of the model to impose a mathematically tractable structure on important problems involving the operation and performance of a memory hierarchy. It describes events as they play out at a wide range of time scales, from the operation of file buffers and storage control cache, to a statistical view of entire disk storage applications. Striking insights are obtained about how memory hierarchies work, and how to exploit them to best advantage. The emphasis is on the practical application of such results. The Fractal Structure of Data Reference: Applications to the Memory Hierarchy will be of interest to professionals working in the area of applied computer performance and capacity planning, particularly those with a focus on disk storage. The book is also an excellent reference for those interested in database and data structure research.
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars' GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.
This edited volume focuses on the work of Professor Larisa Maksimova, providing a comprehensive account of her outstanding contributions to different branches of non-classical logic. The book covers themes ranging from rigorous implication, relevance and algebraic logic, to interpolation, definability and recognizability in superintuitionistic and modal logics. It features both her scientific autobiography and original contributions from experts in the field of non-classical logics. Professor Larisa Maksimova's influential work involved combining methods of algebraic and relational semantics. Readers will be able to trace both influences on her work, and the ways in which her work has influenced other logicians. In the historical part of this book, it is possible to trace important milestones in Maksimova's career. Early on, she developed an algebraic semantics for relevance logics and relational semantics for the logic of entailment. Later, Maksimova discovered that among the continuum of superintuitionisitc logics there are exactly three pretabular logics. She went on to obtain results on the decidability of tabularity and local tabularity problems for superintuitionistic logics and for extensions of S4. Further investigations by Maksimova were aimed at the study of fundamental properties of logical systems (different versions of interpolation and definability, disjunction property, etc.) in big classes of logics, and on decidability and recognizability of such properties. To this end she determined a powerful combination of algebraic and semantic methods, which essentially determine the modern state of investigations in the area, as can be seen in the later chapters of this book authored by leading experts in non-classical logics. These original contributions bring the reader up to date on the very latest work in this field.
Multiobjective Evolutionary Algorithms and Applications provides comprehensive treatment on the design of multiobjective evolutionary algorithms and their applications in domains covering areas such as control and scheduling. Emphasizing both the theoretical developments and the practical implementation of multiobjective evolutionary algorithms, a profound mathematical knowledge is not required. Written for a wide readership, engineers, researchers, senior undergraduates and graduate students interested in the field of evolutionary algorithms and multiobjective optimization with some basic knowledge of evolutionary computation will find this book a useful addition to their book case.
The fields of similarity and preference are still broadening due to the exploration of new fields of application. This is caused by the strong impact of vagueness, imprecision, uncertainty and dominance on human and agent information, communication, planning, decision, action, and control as well as by the technical progress of the information technology itself. The topics treated in this book are of interest to computer scientists, statisticians, operations researchers, experts in AI, cognitive psychologists and economists.
A best-seller in its French edition, the construction of this book is original and its success in the French market demonstrates its appeal. It is based on three principles: 1. An organization of the chapters by families of algorithms : exhaustive search, divide and conquer, etc. At the contrary, there is no chapter only devoted to a systematic exposure of, say, algorithms on strings. Some of these will be found in different chapters. 2. For each family of algorithms, an introduction is given to the mathematical principles and the issues of a rigorous design, with one or two pedagogical examples. 3. For its most part, the book details 150 problems, spanning on seven families of algorithms. For each problem, a precise and progressive statement is given. More important, a complete solution is detailed, with respect to the design principles that have been presented ; often, some classical errors are pointed at. Roughly speaking, two thirds of the book are devoted to the detailed rational construction of the solutions.
This book presents a comprehensive, structured, up-to-date survey on instruction selection. The survey is structured according to two dimensions: approaches to instruction selection from the past 45 years are organized and discussed according to their fundamental principles, and according to the characteristics of the supported machine instructions. The fundamental principles are macro expansion, tree covering, DAG covering, and graph covering. The machine instruction characteristics introduced are single-output, multi-output, disjoint-output, inter-block, and interdependent machine instructions. The survey also examines problems that have yet to be addressed by existing approaches. The book is suitable for advanced undergraduate students in computer science, graduate students, practitioners, and researchers.
fEt moi, . . . . sifavait sucommenten rcvenir, One service mathematics has rendered the jen'yseraispointall: human race. It hasput rommon senseback JulesVerne whereit belongs, on the topmost shelf next tothedustycanisterlabelled'discardednon Theseriesis divergent; thereforewemaybe sense'. ahletodosomethingwithit. EricT. Bell O. Heaviside Mathematicsisatoolforthought. Ahighlynecessarytoolinaworldwherebothfeedbackandnon linearitiesabound. Similarly, allkindsofpartsofmathematicsserveastoolsforotherpartsandfor othersciences. Applyinga simplerewritingrule to thequoteon theright aboveonefinds suchstatementsas: 'One service topology hasrenderedmathematicalphysics . . . '; 'Oneservicelogichasrenderedcom puterscience . . . ';'Oneservicecategorytheoryhasrenderedmathematics . . . '. Allarguablytrue. And allstatementsobtainablethiswayformpartoftheraisond'etreofthisseries. This series, Mathematics and Its Applications, started in 1977. Now that over one hundred volumeshaveappeareditseemsopportunetoreexamineitsscope. AtthetimeIwrote "Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by puttingforth new branches. It also happens, quiteoften in fact, that branches which were thought to becompletely disparatearesuddenly seento berelated. Further, thekindandlevelofsophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially)in regionaland theoretical economics; algebraic geometryinteractswithphysics; theMinkowskylemma, codingtheoryandthestructure of water meet one another in packing and covering theory; quantum fields, crystal defectsand mathematicalprogrammingprofit from homotopy theory; Liealgebras are relevanttofiltering; andpredictionandelectricalengineeringcanuseSteinspaces. And in addition to this there are such new emerging subdisciplines as 'experimental mathematics', 'CFD', 'completelyintegrablesystems', 'chaos, synergeticsandlarge-scale order', whicharealmostimpossibletofitintotheexistingclassificationschemes. They drawuponwidelydifferentsectionsofmathematics. " By andlarge, all this stillapplies today. Itis still truethatatfirst sightmathematicsseemsrather fragmented and that to find, see, and exploit the deeper underlying interrelations more effort is neededandsoarebooks thatcanhelp mathematiciansand scientistsdoso. Accordingly MIA will continuetotry tomakesuchbooksavailable. If anything, the description I gave in 1977 is now an understatement."
The advent of the computer age has set in motion a profound shift in our perception of science -its structure, its aims and its evolution. Traditionally, the principal domains of science were, and are, considered to be mathe matics, physics, chemistry, biology, astronomy and related disciplines. But today, and to an increasing extent, scientific progress is being driven by a quest for machine intelligence - for systems which possess a high MIQ (Machine IQ) and can perform a wide variety of physical and mental tasks with minimal human intervention. The role model for intelligent systems is the human mind. The influ ence of the human mind as a role model is clearly visible in the methodolo gies which have emerged, mainly during the past two decades, for the con ception, design and utilization of intelligent systems. At the center of these methodologies are fuzzy logic (FL); neurocomputing (NC); evolutionary computing (EC); probabilistic computing (PC); chaotic computing (CC); and machine learning (ML). Collectively, these methodologies constitute what is called soft computing (SC). In this perspective, soft computing is basically a coalition of methodologies which collectively provide a body of concepts and techniques for automation of reasoning and decision-making in an environment of imprecision, uncertainty and partial truth."
Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted."
Predictive Intelligence in Biomedical and Health Informatics focuses on imaging, computer-aided diagnosis and therapy as well as intelligent biomedical image processing and analysis. It develops computational models, methods and tools for biomedical engineering related to computer-aided diagnostics (CAD), computer-aided surgery (CAS), computational anatomy and bioinformatics. Large volumes of complex data are often a key feature of biomedical and engineering problems and computational intelligence helps to address such problems. Practical and validated solutions to hard biomedical and engineering problems can be developed by the applications of neural networks, support vector machines, reservoir computing, evolutionary optimization, biosignal processing, pattern recognition methods and other techniques to address complex problems of the real world.
There are several approaches to attack hard problems. All have their merits, but also their limitations, and need a large body of theory as their basis. A number of books for each one exist: books on complexity theory, others on approximation algorithms, heuristic approaches, parametrized complexity, and yet others on randomized algorithms. This book discusses thoroughly all of the above approaches. And, amazingly, at the same time, does this in a style that makes the book accessible not only to theoreticians, but also to the non-specialist, to the student or teacher, and to the programmer. Do you think that mathematical rigor and accessibility contradict? Look at this book to find out that they do not, due to the admirable talent of the author to present his material in a clear and concise way, with the idea behind the approach spelled out explicitly, often with a revealing example.Reading this book is a beautiful experience and I can highly recommend it to anyone interested in learning how to solve hard problems. It is not just a condensed union of material from other books. Because it discusses the different approaches in depth, it has the chance to compare them in detail, and, most importantly, to highlight under what circumstances which approach might be worth exploring. No book on a single type of solution can do that, but this book does it in an absolutely fascinating way that can serve as a pattern for theory textbooks with a high level of generality. (Peter Widmayer)The second edition extends the part on the method of relaxation to linear programming with an emphasis on rounding, LP-duality, and primal-dual schema, and provides a self-contained and transparent presentation of the design of randomized algorithms for primality testing.
This volume directly addresses the complexities involved in data mining and the development of new algorithms, built on an underlying theory consisting of linear and non-linear dynamics, data selection, filtering, and analysis, while including analytical projection and prediction. The results derived from the analysis are then further manipulated such that a visual representation is derived with an accompanying analysis. The book brings very current methods of analysis to the forefront of the discipline, provides researchers and practitioners the mathematical underpinning of the algorithms, and the non-specialist with a visual representation such that a valid understanding of the meaning of the adaptive system can be attained with careful attention to the visual representation. The book presents, as a collection of documents, sophisticated and meaningful methods that can be immediately understood and applied to various other disciplines of research. The content is composed of chapters addressing: An application of adaptive systems methodology in the field of post-radiation treatment involving brain volume differences in children; A new adaptive system for computer-aided diagnosis of the characterization of lung nodules; A new method of multi-dimensional scaling with minimal loss of information; A description of the semantics of point spaces with an application on the analysis of terrorist attacks in Afghanistan; The description of a new family of meta-classifiers; A new method of optimal informational sorting; A general method for the unsupervised adaptive classification for learning; and the presentation of two new theories, one in target diffusion and the other in twisting theory.
This volume is about "Structure." The search for "structure," always the pursuit of sciences within their specific areas and perspectives, is witnessing these days a dra matic revolution. The coexistence and interaction of so many structures (atoms, hu mans, cosmos and all that there is in between) would be unconceivable according to many experts, if there were not, behind it all, some gen eral organizational principle. s that (at least in some asymptotic way) make possible so many equilibria among species and natural objects, fan tastically tuned to an extremely high degree of precision. The evidence accumulates to an increasingly impressive degree; a concrete example comes from physics, whose constant aim always was and is that of searching for "ultimate laws," out of which everything should follow, from quarks to the cosmos. Our notions and philosophy have un dergone major revolutions, whenever the "unthinkable" has been changed by its wonderful endeavours into "fact." Well, it is just from physics that evidence comes: even if the "ultimate" could be reached, it would not in any way be a terminal point. When "complexity" comes into the game, entirely new notions have to be invented; they all have to do with "structure," though this time in a much wider sense than would have been understood a decade or so ago."
The cryptosystems based on the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP) and the Elliptic Curve Discrete Logarithm Problem (ECDLP) are essentially the only three types of practical public-key cryptosystems in use. The security of these cryptosystems relies heavily on these three infeasible problems, as no polynomial-time algorithms exist for them so far. However, polynomial-time quantum algorithms for IFP, DLP and ECDLP do exist, provided that a practical quantum computer exists. "Quantum Attacks on Public-Key Cryptosystems" presemts almost allknown quantum computing based attacks on public-key cryptosystems, with an emphasis on quantum algorithms for IFP, DLP, and ECDLP. It also discusses some quantum resistant cryptosystems to replace the IFP, DLP and ECDLP based cryptosystems. This book is intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the field.
Markov decision process (MDP) models are widely used for modeling
sequential decision-making problems that arise in engineering,
economics, computer science, and the social sciences. Many
real-world problems modeled by MDPs have huge state and/or action
spaces, giving an opening to the curse of dimensionality and so
making practical solution of the resulting models intractable. In
other cases, the system of interest is too complex to allow
explicit specification of some of the MDP model parameters, but
simulation samples are readily available (e.g., for random
transitions and costs). For these settings, various sampling and
population-based algorithms have been developed to overcome the
difficulties of computing an optimal solution in terms of a policy
and/or value function. Specific approaches include adaptive
sampling, evolutionary policy iteration, evolutionary random policy
search, and model reference adaptive search. |
You may like...
Handbook of Research on Water Sciences…
Ashok Vaseashta, Gheorghe Duca, …
Hardcover
R7,752
Discovery Miles 77 520
Principles of Foundation Engineering, SI…
Braja Das, Nagaratnam Sivakugan
Paperback
|