![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > General theory of computing > Data structures
This two-volume book constitutes the post-conference proceedings of the 5th International Conference on Advances in Computing and Data Sciences, ICACDS 2021, held in Nashik, India, in April 2021.* The 103 full papers were carefully reviewed and selected from 781 submissions. The papers in Part I and II are centered around topics like distributed systems organizing principles, development frameworks and environments, software verification and validation, computational complexity and cryptography, machine learning theory, database theory, probabilistic representations database management system engines, data mining, information retrieval query processing, database and storage security, ubiquitous and mobile computing, parallel computing methodologies, and others. *The conference was held virtually due to the COVID-19 pandemic.
This book is an attempt to bring value to the enterprise pursuits in the areas of research and innovation around the specific issues in terms of topic selection, open data resources and researcher orientation. Over the last 300 years, industrial revolutions have had game-changing impact on societies. Presently, by and large, we are at the crossroads of the fourth industrial revolution, where phygital systems are going to play a massive role, where digital systems can simulate and go beyond the limitations of the physical world, thereby enabling a new world order. This transformation is cutting across every sphere known to mankind. The world will become a globally localized marketplace. In today's business world, sustainability is a corporate agenda. Enterprises are also aiming to be purpose-driven, adaptive and resilient to disruptions. The contributions to community and environment are part of their corporate branding. The book explores and presents a part of the open data sets from government institutions to achieve the sustainable goals at local level, in turn contributing towards global mission. As the topic suggests, the authors are looking at some of the specific issues in the areas of environment, agriculture and health care through the lens of data science. The authors believe that the above three areas chosen have deep relevance in today's world. The intent is to explore these issues from a data and analytics perspective and identify cracks through which deeper inroads can be made. Conscious efforts have been taken to make use of all the major data science techniques like prediction, classification, clustering, and correlation. Given the above background, deeper waters will be explored through the contents of this book.
Algorithms are now widely employed to make decisions that have increasingly far-reaching impacts on individuals and society as a whole ("algorithmic governance"), which could potentially lead to manipulation, biases, censorship, social discrimination, violations of privacy, property rights, and more. This has sparked a global debate on how to regulate AI and robotics ("governance of algorithms"). This book discusses both of these key aspects: the impact of algorithms, and the possibilities for future regulation.
This two-volume set constitutes the refereed proceedings of the First International Conference International Conference on Application of Big Data, Blockchain, and Internet of Things for Education Informatization. The conference was held in August 2021 and due to COVID-19 pandemic virtually. The 99 revised full papers and 45 short papers have been selected from 503 submissions. The papers describe research fields such as "big data" and "information education". The aim of the conference is to provide international cooperation and exchange platforms for big data and information education experts, scholars and enterprise developers to share research results, discuss existing problems and challenges, and explore cutting-edge science and technology.
This book explores how predictive policing transforms police work. Police departments around the world have started to use data-driven applications to produce crime forecasts and intervene into the future through targeted prevention measures. Based on three years of field research in Germany and Switzerland, this book provides a theoretically sophisticated and empirically detailed account of how the police produce and act upon criminal futures as part of their everyday work practices. The authors argue that predictive policing must not be analyzed as an isolated technological artifact, but as part of a larger sociotechnical system that is embedded in organizational structures and occupational cultures. The book highlights how, for crime prediction software to come to matter and play a role in more efficient and targeted police work, several translation processes are needed to align human and nonhuman actors across different divisions of police work. Police work is a key function for the production and maintenance of public order, but it can also discriminate, exclude, and violate civil liberties and human rights. When criminal futures come into being in the form of algorithmically produced risk estimates, this can have wide-ranging consequences. Building on empirical findings, the book presents a number of practical recommendations for the prudent use of algorithmic analysis tools in police work that will speak to the protection of civil liberties and human rights as much as they will speak to the professional needs of police organizations. An accessible and compelling read, this book will appeal to students and scholars of criminology, sociology, and cultural studies as well as to police practitioners and civil liberties advocates, in addition to all those who are interested in how to implement reasonable forms of data-driven policing.
This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.
This two-volume set CCIS 1498 and CCIS 1499 contains the late breaking posters presented during the 23rd International Conference on Human-Computer Interaction, HCII 2021, which was held virtually in July 2021. The total of 1276 papers and 241 posters included in the 39 HCII 2021 proceedings volumes was carefully reviewed and selected from 5222 submissions. Additionally, 174 papers and 146 posters are included in the volumes of the proceedings published after the conference, as "Late Breaking Work" (papers and posters). The posters presented in these two volumes are organized in topical sections as follows: HCI Theory and Practice; UX Design and Research in Intelligent Environments; Interaction with Robots, Chatbots, and Agents; Virtual, Augmented, and Mixed Reality; Games and Gamification; HCI in Mobility, Transport and Aviation; Design for All and Assistive Technologies; Physiology, Affect and Cognition; HCI for Health and Wellbeing; HCI in Learning, Teaching, and Education; Culture and Computing; Social Computing; Design Case Studies; User Experience Studies.
This two-volume book provides an insight into the 10th International Conference on Soft Computing for Problem Solving (SocProS 2020). This international conference is a joint technical collaboration of Soft Computing Research Society and Indian Institute of Technology Indore. The book presents the latest achievements and innovations in the interdisciplinary areas of soft computing. It brings together the researchers, engineers and practitioners to discuss thought-provoking developments and challenges, in order to select potential future directions. It covers original research papers in the areas including but not limited to algorithms (artificial immune system, artificial neural network, genetic algorithm, genetic programming and particle swarm optimization) and applications (control systems, data mining and clustering, finance, weather forecasting, game theory, business and forecasting applications). The book will be beneficial for young as well as experienced researchers dealing across complex and intricate real-world problems for which finding a solution by traditional methods is a difficult task.
This book constitutes the thoroughly revised selected papers from the 17th International Symposium, FACS 2021, which was hel virtually in October 2021. The 7 full papers and 1 short contribution were carefully reviewed and selected from 16 submissions and are presented in the volume together with 1 invited paper. FACS 2021 is concerned with how formal methods can be applied to component-based software and system development. The book is subdivided into two blocks: Modelling & Composition and Verification. Chapter "A Linear Parallel Algorithm to Compute Bisimulation and Relational Coarsest Partitions" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".
Take a journey toward discovering, learning, and using Apache Spark 3.0. In this book, you will gain expertise on the powerful and efficient distributed data processing engine inside of Apache Spark; its user-friendly, comprehensive, and flexible programming model for processing data in batch and streaming; and the scalable machine learning algorithms and practical utilities to build machine learning applications. Beginning Apache Spark 3 begins by explaining different ways of interacting with Apache Spark, such as Spark Concepts and Architecture, and Spark Unified Stack. Next, it offers an overview of Spark SQL before moving on to its advanced features. It covers tips and techniques for dealing with performance issues, followed by an overview of the structured streaming processing engine. It concludes with a demonstration of how to develop machine learning applications using Spark MLlib and how to manage the machine learning development lifecycle. This book is packed with practical examples and code snippets to help you master concepts and features immediately after they are covered in each section. After reading this book, you will have the knowledge required to build your own big data pipelines, applications, and machine learning applications. What You Will Learn Master the Spark unified data analytics engine and its various components Work in tandem to provide a scalable, fault tolerant and performant data processing engine Leverage the user-friendly and flexible programming model to perform simple to complex data analytics using dataframe and Spark SQL Develop machine learning applications using Spark MLlib Manage the machine learning development lifecycle using MLflow Who This Book Is For Data scientists, data engineers and software developers.
This book constitutes the proceedings of the 23rd International Symposium on Fundamentals of Computation Theory, FCT 2021, held in Athens, Greece, in September 2021. The 30 full papers included in this volume were carefully reviewed and selected from 94 submissions. In addition, the book contains 2 invited talks. The papers cover topics of all aspects of theoretical computer science, in particular algorithms, complexity, formal and logical methods.
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers and case studies related to all the areas of data mining, machine learning, Internet of things (IoT) and information security.
This English version of Ruslan L. Stratonovich's Theory of Information (1975) builds on theory and provides methods, techniques, and concepts toward utilizing critical applications. Unifying theories of information, optimization, and statistical physics, the value of information theory has gained recognition in data science, machine learning, and artificial intelligence. With the emergence of a data-driven economy, progress in machine learning, artificial intelligence algorithms, and increased computational resources, the need for comprehending information is essential. This book is even more relevant today than when it was first published in 1975. It extends the classic work of R.L. Stratonovich, one of the original developers of the symmetrized version of stochastic calculus and filtering theory, to name just two topics. Each chapter begins with basic, fundamental ideas, supported by clear examples; the material then advances to great detail and depth. The reader is not required to be familiar with the more difficult and specific material. Rather, the treasure trove of examples of stochastic processes and problems makes this book accessible to a wide readership of researchers, postgraduates, and undergraduate students in mathematics, engineering, physics and computer science who are specializing in information theory, data analysis, or machine learning.
This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.
This book gathers selected papers presented at the International Conference on Advancements in Computing and Management (ICACM 2019). Discussing current research in the field of artificial intelligence and machine learning, cloud computing, recent trends in security, natural language processing and machine translation, parallel and distributed algorithms, as well as pattern recognition and analysis, it is a valuable resource for academics, practitioners in industry and decision-makers.
This book presents the best-selected papers presented at the International Conference on Data Science, Computation and Security (IDSCS-2021), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during April 16-17, 2021. The proceeding is targeting the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing, and cloud computing.
This book constitutes refereed proceedings of the 20th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2021, held in Irkutsk, Russia, in July 2021. Due to the COVID-19 pandemic the conference was held online. The 31 full papers and 3 short papers presented in this volume were carefully reviewed and selected from a total of 102 submissions. The papers in the volume are organised according to the following topical headings: continuous optimization; integer programming and combinatorial optimization; operational research applications; optimal control.
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems contains computer-code examples for the development of genetic algorithm systems - compiling them from an array of practitioners in the field. Each contribution of this singular resource includes: unique code segments documentation description of the operations performed rationale for the chosen approach problems the code overcomes or addresses Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems complements the first two volumes in the series by offering examples of computer code. The first two volumes dealt with new research and an overview of the types of applications that could be taken with GAs. This volume differs from its predecessors by specifically concentrating on specific functions in genetic algorithms, serving as the only compilation of useful and usable computer code in the field.
This book constitutes the refereed proceedings of the 27th International Symposium on Model Checking Software, SPIN 2021, held virtually in July 2021.The 3 full papers, 4 tool papers, and 1 case study presented together with 2 invited talks were carefully reviewed and selected from 20 submissions. Topics covered include formal verification techniques for automated analysis of software; formal analysis for modeling languages, such as UML/state charts; formal specification languages, temporal logic, design-by-contract; model checking, automated theorem proving, including SAT and SMT; verifying compilers; abstraction and symbolic execution techniques; and much more.
This book constitutes selected papers from the Second International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS 2021, held in Vellore, India, in February 2021. The 32 full papers and 6 short papers presented were thoroughly reviewed and selected from 103 submissions. They are organized in the topical sections on digital design for signal, image and video processing; VLSI testing and verification; emerging technologies and IoT; nano-scale modelling and process technology device; analog and mixed signal design; communication technologies and circuits; technology and modelling for micro electronic devices; electronics for green technology.
This volume LNCS 12925 constitutes the papers of the 23rd International Conference on Big Data Analytics and Knowledge Discovery, held in September 2021. Due to COVID-19 pandemic it was held virtually. The 12 full papers presented together with 15 short papers in this volume were carefully reviewed and selected from a total of 71 submissions. The papers reflect a wide range of topics in the field of data integration, data warehousing, data analytics, and recently big data analytics, in a broad sense. The main objectives of this event are to explore, disseminate, and exchange knowledge in these fields.
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
This book constitutes the refereed proceedings of the 12th International Conference on the Theory and Application of Diagrams, Diagrams 2021, held virtually in September 2021. The 16 full papers and 25 short papers presented together with 16 posters were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: design of concrete diagrams; theory of diagrams; diagrams and mathematics; diagrams and logic; new representation systems; analysis of diagrams; diagrams and computation; cognitive analysis; diagrams as structural tools; formal diagrams; and understanding thought processes. 10 chapters are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The contributions gathered in this book focus on modern methods for statistical learning and modeling in data analysis and present a series of engaging real-world applications. The book covers numerous research topics, ranging from statistical inference and modeling to clustering and factorial methods, from directional data analysis to time series analysis and small area estimation. The applications reflect new analyses in a variety of fields, including medicine, finance, engineering, marketing and cyber risk. The book gathers selected and peer-reviewed contributions presented at the 12th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2019), held in Cassino, Italy, on September 11-13, 2019. CLADAG promotes advanced methodological research in multivariate statistics with a special focus on data analysis and classification, and supports the exchange and dissemination of ideas, methodological concepts, numerical methods, algorithms, and computational and applied results. This book, true to CLADAG's goals, is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. |
![]() ![]() You may like...
Augmented Exploitation - Artificial…
Phoebe Moore, Jamie Woodcock
Hardcover
R2,719
Discovery Miles 27 190
|