![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases
This volume collects contributions written by different experts in honor of Prof. Jaime Munoz Masque. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.
In this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions, that can be solved by using a non trivial brute-force approach. Given a metabolic network, each individual story should explain how some interesting metabolites are derived from some others through a chain of reactions, by keeping all alternative pathways between sources and targets. Enumerating cycles or paths in an undirected graph, such as a protein-protein interaction undirected network, is an example of an enumeration problem in which all the solutions can be listed through an optimal algorithm, i.e. the time required to list all the solutions is dominated by the time to read the graph plus the time required to print all of them. By extending this result to directed graphs, it would be possible to deal more efficiently with feedback loops and signed paths analysis in signed or interaction directed graphs, such as gene regulatory networks. Finally, enumerating mouths or bubbles with a source s in a directed graph, that is enumerating all the two vertex-disjoint directed paths between the source s and all the possible targets, is an example of an enumeration problem in which all the solutions can be listed through a linear delay algorithm, meaning that the delay between any two consecutive solutions is linear, by turning the problem into a constrained cycle enumeration problem. Such patterns, in a de Bruijn graph representation of the reads obtained by sequencing, are related to polymorphisms in DNA- or RNA-seq data.
This book provides fresh insights into the cutting edge of multimedia data mining, reflecting how the research focus has shifted towards networked social communities, mobile devices and sensors. The work describes how the history of multimedia data processing can be viewed as a sequence of disruptive innovations. Across the chapters, the discussion covers the practical frameworks, libraries, and open source software that enable the development of ground-breaking research into practical applications. Features: reviews how innovations in mobile, social, cognitive, cloud and organic based computing impacts upon the development of multimedia data mining; provides practical details on implementing the technology for solving real-world problems; includes chapters devoted to privacy issues in multimedia social environments and large-scale biometric data processing; covers content and concept based multimedia search and advanced algorithms for multimedia data representation, processing and visualization.
This book highlights recent research advances in unsupervised learning using natural computing techniques such as artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, artificial life, quantum computing, DNA computing, and others. The book also includes information on the use of natural computing techniques for unsupervised learning tasks. It features several trending topics, such as big data scalability, wireless network analysis, engineering optimization, social media, and complex network analytics. It shows how these applications have triggered a number of new natural computing techniques to improve the performance of unsupervised learning methods. With this book, the readers can easily capture new advances in this area with systematic understanding of the scope in depth. Readers can rapidly explore new methods and new applications at the junction between natural computing and unsupervised learning. Includes advances on unsupervised learning using natural computing techniques Reports on topics in emerging areas such as evolutionary multi-objective unsupervised learning Features natural computing techniques such as evolutionary multi-objective algorithms and many-objective swarm intelligence algorithms
Integrative Document and Content Management: Strategies for Exploiting Enterprise Knowledge blends theory and practice to provide practical knowledge and guidelines to enterprises wishing to understand the importance of managing documents to their operations along with presentation of document content to facilitate business planning and operations support. This book gives extensive pointers to those who propose to embark upon the implementation of integrated document management systems and to embrace Web content management within a life cycle framework covering document creation to Web publication.
'Data Mining Patterns' gives an overall view of the recent solutions for mining and covers mining new kinds of patterns, mining patterns under constraints, new kinds of complex data and real-world applications of these concepts.
Graphs are a powerful tool for representing and understanding objects and their relationships in various application domains. The growing popularity of graph databases has generated data management problems that include finding efficient techniques for compressing large graph databases and suitable techniques for visualizing, browsing, and navigating large graph databases. Graph Data Management: Techniques and Applications is a central reference source for different data management techniques for graph data structures and their application. This book discusses graphs for modeling complex structured and schemaless data from the Semantic Web, social networks, protein networks, chemical compounds, and multimedia databases and offers essential research for academics working in the interdisciplinary domains of databases, data mining, and multimedia technology.
Conceptual modeling has always been one of the main issues in information systems engineering as it aims to describe the general knowledge of the system at an abstract level that facilitates user understanding and software development. This collection of selected papers provides a comprehensive and extremely readable overview of what conceptual modeling is and perspectives on making it more and more relevant in our society. It covers topics like modeling the human genome, blockchain technology, model-driven software development, data integration, and wiki-like repositories and demonstrates the general applicability of conceptual modeling to various problems in diverse domains. Overall, this book is a source of inspiration for everybody in academia working on the vision of creating a strong, fruitful and creative community of conceptual modelers. With this book the editors and authors want to honor Prof. Antoni Olive for his enormous and ongoing contributions to the conceptual modeling discipline. It was presented to him on the occasion of his keynote at ER 2017 in Valencia, a conference that he has contributed to and supported for over 20 years. Thank you very much to Antoni for so many years of cooperation and friendship.
With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as Uncertain . This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants."
In this book, contributors provide insights into the latest developments of Edge Computing/Mobile Edge Computing, specifically in terms of communication protocols and related applications and architectures. The book provides help to Edge service providers, Edge service consumers, and Edge service developers interested in getting the latest knowledge in the area. The book includes relevant Edge Computing topics such as applications; architecture; services; inter-operability; data analytics; deployment and service; resource management; simulation and modeling; and security and privacy. Targeted readers include those from varying disciplines who are interested in designing and deploying Edge Computing. Features the latest research related to Edge Computing, from a variety of perspectives; Tackles Edge Computing in academia and industry, featuring a variety of new and innovative operational ideas; Provides a strong foundation for researchers to advance further in the Edge Computing domain.
This book examines the principles of and advances in personalized task recommendation in crowdsourcing systems, with the aim of improving their overall efficiency. It discusses the challenges faced by personalized task recommendation when crowdsourcing systems channel human workforces, knowledge, skills and perspectives beyond traditional organizational boundaries. The solutions presented help interested individuals find tasks that closely match their personal interests and capabilities in a context of ever-increasing opportunities of participating in crowdsourcing activities. In order to explore the design of mechanisms that generate task recommendations based on individual preferences, the book first lays out a conceptual framework that guides the analysis and design of crowdsourcing systems. Based on a comprehensive review of existing research, it then develops and evaluates a new kind of task recommendation service that integrates with existing systems. The resulting prototype provides a platform for both the field study and the practical implementation of task recommendation in productive environments.
Transactions are a concept related to the logical database as seen from the perspective of database application programmers: a transaction is a sequence of database actions that is to be executed as an atomic unit of work. The processing of transactions on databases is a well- established area with many of its foundations having already been laid in the late 1970s and early 1980s. The unique feature of this textbook is that it bridges the gap between the theory of transactions on the logical database and the implementation of the related actions on the underlying physical database. The authors relate the logical database, which is composed of a dynamically changing set of data items with unique keys, and the underlying physical database with a set of fixed-size data and index pages on disk. Their treatment of transaction processing builds on the "do-redo-undo" recovery paradigm, and all methods and algorithms presented are carefully designed to be compatible with this paradigm as well as with write-ahead logging, steal-and-no-force buffering, and fine-grained concurrency control. Chapters 1 to 6 address the basics needed to fully appreciate transaction processing on a centralized database system within the context of our transaction model, covering topics like ACID properties, database integrity, buffering, rollbacks, isolation, and the interplay of logical locks and physical latches. Chapters 7 and 8 present advanced features including deadlock-free algorithms for reading, inserting and deleting tuples, while the remaining chapters cover additional advanced topics extending on the preceding foundational chapters, including multi-granular locking, bulk actions, versioning, distributed updates, and write-intensive transactions. This book is primarily intended as a text for advanced undergraduate or graduate courses on database management in general or transaction processing in particular.
This book presents a unique approach to stream data mining. Unlike the vast majority of previous approaches, which are largely based on heuristics, it highlights methods and algorithms that are mathematically justified. First, it describes how to adapt static decision trees to accommodate data streams; in this regard, new splitting criteria are developed to guarantee that they are asymptotically equivalent to the classical batch tree. Moreover, new decision trees are designed, leading to the original concept of hybrid trees. In turn, nonparametric techniques based on Parzen kernels and orthogonal series are employed to address concept drift in the problem of non-stationary regressions and classification in a time-varying environment. Lastly, an extremely challenging problem that involves designing ensembles and automatically choosing their sizes is described and solved. Given its scope, the book is intended for a professional audience of researchers and practitioners who deal with stream data, e.g. in telecommunication, banking, and sensor networks.
As the applications of data mining, the non-trivial extraction of implicit information in a data set, have expanded in recent years, so has the need for techniques that are tolerable to imprecision, uncertainty, and approximation. Intelligent Soft Computation and Evolving Data Mining: Integrating Advanced Technologies is a compendium that addresses this need. It integrates contrasting techniques of conventional hard computing and soft computing to exploit the tolerance for imprecision, uncertainty, partial truth, and approximation to achieve tractability, robustness and low-cost solution. This book provides a reference to researchers, practitioners, and students in both soft computing and data mining communities, forming a foundation for the development of the field.
This invaluable text/reference investigates the state of the art in approaches to building, monitoring, managing, and governing smart cities. A particular focus is placed on the distributed computing environments within the infrastructure of such cities, including issues of device connectivity, communication, security, and interoperability. A selection of experts of international repute offer their perspectives on current trends and best practices, and their suggestions for future developments, together with case studies supporting the vision of smart cities based on the Internet of Things (IoT). Topics and features: examines the various methodologies relating to next-level urbanization, including approaches to security and privacy relating to social and legal aspects; describes a recursive and layered approach to modeling large-scale resource management systems for self-sustainable cities; proposes a novel architecture for hybrid vehicular wireless sensor networks, and a pricing mechanism for the management of natural resources; discusses the challenges and potential solutions to building smart city surveillance systems, applying knowledge-based governance, and adopting electric vehicles; covers topics on intelligent distributed systems, IoT, fog computing paradigms, big data management and analytics, and smart grids; reviews issues of sustainability in the design of smart cities and healthcare services, illustrated by case studies taken from cities in Japan, India, and Brazil. This illuminating volume offers a comprehensive reference for researchers investigating smart cities and the IoT, students interested in the distributed computing technologies used by smart living systems, and practitioners wishing to adopt the latest security and connectivity techniques in smart city environments.
This book presents two practical physical attacks. It shows how attackers can reveal the secret key of symmetric as well as asymmetric cryptographic algorithms based on these attacks, and presents countermeasures on the software and the hardware level that can help to prevent them in the future. Though their theory has been known for several years now, since neither attack has yet been successfully implemented in practice, they have generally not been considered a serious threat. In short, their physical attack complexity has been overestimated and the implied security threat has been underestimated. First, the book introduces the photonic side channel, which offers not only temporal resolution, but also the highest possible spatial resolution. Due to the high cost of its initial implementation, it has not been taken seriously. The work shows both simple and differential photonic side channel analyses. Then, it presents a fault attack against pairing-based cryptography. Due to the need for at least two independent precise faults in a single pairing computation, it has not been taken seriously either. Based on these two attacks, the book demonstrates that the assessment of physical attack complexity is error-prone, and as such cryptography should not rely on it. Cryptographic technologies have to be protected against all physical attacks, whether they have already been successfully implemented or not. The development of countermeasures does not require the successful execution of an attack but can already be carried out as soon as the principle of a side channel or a fault attack is sufficiently understood.
Cisco Systems, Inc. is the worldwide leader in networking for the Internet, and its Intrusion Detection Systems line of products is making in roads in the IDS market segment, with major upgrades having happened in February of 2003. Cisco Security Professional's Guide to Secure Intrusion Detection Systems is a comprehensive, up-to-date guide to the hardware and software that comprise the Cisco IDS. Cisco Security Professional's Guide to Secure Intrusion Detection Systems does more than show network engineers how to set up and manage this line of best selling products ... it walks them step by step through all the objectives of the Cisco Secure Intrusion Detection System course (and corresponding exam) that network engineers must pass on their way to achieving sought-after CCSP certification.
Currently, Internet and virtual reality communication is essentially audio-visual. The next important breakthrough of the Internet will be the communication and sharing of smell and taste experiences digitally. Audio-visual stimuli are frequency based, and they can be easily digitized and actuated. On the other hand, taste and smell stimuli are based on chemical molecules, therefore, they are not easy to digitize or actuate. To solve this problem, we are required to discover new digital actuation technologies for taste and smell. The authors of this book have experimented on developing digital actuation devices for several years. This book will provide a complete overview of the importance of digitizing taste and smell, prior works, proposed technologies by the authors, other state of the art research, advantages and limitations of the proposed methods, and future applications. We expect digital taste and smell technologies will revolutionize the field of multisensory augmented reality and open up new interaction possibilities in different disciplines such as Human Computer Interaction, Communication, and Augmented and Virtual Reality.
The purpose of this book is to review the recent advances in E-health technologies and applications. In particular, the book investigates the recent advancements in physical design of medical devices, signal processing and emergent wireless technologies for E-health. In a second part, novel security and privacy solutions for IoT-based E-health applications are presented. The last part of the book is focused on applications, data mining and data analytics for E-health using artificial intelligence and cloud infrastructure. E-health has been an evolving concept since its inception, due to the numerous technologies that can be adapted to offer new innovative and efficient E-health applications. Recently, with the tremendous advancement of wireless technologies, sensors and wearable devices and software technologies, new opportunities have arisen and transformed the E-health field. Moreover, with the expansion of the Internet of Things, and the huge amount of data that connected E-health devices and applications are generating, it is also mandatory to address new challenges related to the data management, applications management and their security. Through this book, readers will be introduced to all these concepts. This book is intended for all practitioners (industrial and academic) interested in widening their knowledge in wireless communications and embedded technologies applied to E-health, cloud computing, artificial intelligence and big data for E-health applications and security issues in E-health.
This book presents a comprehensive and up-to-date treatise of a range of methodological and algorithmic issues. It also discusses implementations and case studies, identifies the best design practices, and assesses data analytics business models and practices in industry, health care, administration and business.Data science and big data go hand in hand and constitute a rapidly growing area of research and have attracted the attention of industry and business alike. The area itself has opened up promising new directions of fundamental and applied research and has led to interesting applications, especially those addressing the immediate need to deal with large repositories of data and building tangible, user-centric models of relationships in data. Data is the lifeblood of today's knowledge-driven economy.Numerous data science models are oriented towards end users and along with the regular requirements for accuracy (which are present in any modeling), come the requirements for ability to process huge and varying data sets as well as robustness, interpretability, and simplicity (transparency). Computational intelligence with its underlying methodologies and tools helps address data analytics needs.The book is of interest to those researchers and practitioners involved in data science, Internet engineering, computational intelligence, management, operations research, and knowledge-based systems.
This book covers novel research on construction and analysis of optimal cryptographic functions such as almost perfect nonlinear (APN), almost bent (AB), planar and bent functions. These functions have optimal resistance to linear and/or differential attacks, which are the two most powerful attacks on symmetric cryptosystems. Besides cryptographic applications, these functions are significant in many branches of mathematics and information theory including coding theory, combinatorics, commutative algebra, finite geometry, sequence design and quantum information theory. The author analyzes equivalence relations for these functions and develops several new methods for construction of their infinite families. In addition, the book offers solutions to two longstanding open problems, including the problem on characterization of APN and AB functions via Boolean, and the problem on the relation between two classes of bent functions.
This book presents an exhaustive and timely review of key research work on fuzzy XML data management, and provides readers with a comprehensive resource on the state-of-the art tools and theories in this fast growing area. Topics covered in the book include: representation of fuzzy XML, query of fuzzy XML, fuzzy database models, extraction of fuzzy XML from fuzzy database models, reengineering of fuzzy XML into fuzzy database models, and reasoning of fuzzy XML. The book is intended as a reference guide for researchers, practitioners and graduate students working and/or studying in the field of Web Intelligence, as well as for data and knowledge engineering professionals seeking new approaches to replace traditional methods, which may be unnecessarily complex or even unproductive.
This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.
As information technology continues to advance in massive increments, the bank of information available from personal, financial, and business electronic transactions and all other electronic documentation and data storage is growing at an exponential rate. With this wealth of information comes the opportunity and necessity to utilize this information to maintain competitive advantage and process information effectively in real-world situations. Data Mining and Knowledge Discovery Technologies presents researchers and practitioners in fields such as knowledge management, information science, Web engineering, and medical informatics, with comprehensive, innovative research on data mining methods, structures, tools, and methods, the knowledge discovery process, and data marts, among many other cutting-edge topics.
The technologies in data mining have been applied to bioinformatics research in the past few years with success, but more research in this field is necessary. While tremendous progress has been made over the years, many of the fundamental challenges in bioinformatics are still open. Data mining plays a essential role in understanding the emerging problems in genomics, proteomics, and systems biology. ""Advanced Data Mining Technologies in Bioinformatics"" covers important research topics of data mining on bioinformatics. Readers of this book will gain an understanding of the basics and problems of bioinformatics, as well as the applications of data mining technologies in tackling the problems and the essential research topics in the field. ""Advanced Data Mining Technologies in Bioinformatics"" is extremely useful for data mining researchers, molecular biologists, graduate students, and others interested in this topic. |
You may like...
Management Of Information Security
Michael Whitman, Herbert Mattord
Paperback
Database Principles - Fundamentals of…
Carlos Coronel, Keeley Crockett, …
Paperback
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Role of 6g Wireless Networks in AI and…
Malaya Dutta Borah, Steven A. Wright, …
Hardcover
R6,206
Discovery Miles 62 060
CompTIA Data+ DA0-001 Exam Cram
Akhil Behl, Sivasubramanian
Digital product license key
R1,024
Discovery Miles 10 240
|