![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases
The book discusses machine learning-based decision-making models, and presents intelligent, hybrid and adaptive methods and tools for solving complex learning and decision-making problems under conditions of uncertainty. Featuring contributions from data scientists, practitioners and educators, the book covers a range of topics relating to intelligent systems for decision science, and examines recent innovations, trends, and practical challenges in the field. The book is a valuable resource for academics, students, researchers and professionals wanting to gain insights into decision-making.
This book describes the efficient implementation of public-key cryptography (PKC) to address the security challenges of massive amounts of information generated by the vast network of connected devices, ranging from tiny Radio Frequency Identification (RFID) tags to powerful desktop computers. It investigates implementation aspects of post quantum PKC and homomorphic encryption schemes whose security is based on the hardness of the ring-learning with error (LWE) problem. The work includes designing an FPGA-based accelerator to speed up computation on encrypted data in the cloud computer. It also proposes a more practical scheme that uses a special module called recryption box to assist homomorphic function evaluation, roughly 20 times faster than the implementation without this module.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in finance (banking, brokerage, and insurance), marketing (customer relationships, retailing, logistics, and travel), as well as in manufacturing, health care, fraud detection, homeland security, and law enforcement.
This book's main goals are to bring together in a concise way all the methodologies, standards and recommendations related to Data, Queries, Links, Semantics, Validation and other issues concerning machine-readable data on the Web, to describe them in detail, to provide examples of their use, and to discuss how they contribute to - and how they have been used thus far on - the "Web of Data". As the content of the Web becomes increasingly machine readable, increasingly complex tasks can be automated, yielding more and more powerful Web applications that are capable of discovering, cross-referencing, filtering, and organizing data from numerous websites in a matter of seconds. The book is divided into nine chapters, the first of which introduces the topic by discussing the shortcomings of the current Web and illustrating the need for a Web of Data. Next, "Web of Data" provides an overview of the fundamental concepts involved, and discusses some current use-cases on the Web where such concepts are already being employed. "Resource Description Framework (RDF)" describes the graph-structured data model proposed by the Semantic Web community as a common data model for the Web. The chapter on "RDF Schema (RDFS) and Semantics" presents a lightweight ontology language used to define an initial semantics for terms used in RDF graphs. In turn, the chapter "Web Ontology Language (OWL)" elaborates on a more expressive ontology language built upon RDFS that offers much more powerful ontological features. In "SPARQL Query Language" a language for querying and updating RDF graphs is described, with examples of the features it supports, supplemented by a detailed definition of its semantics. "Shape Constraints and Expressions (SHACL/ShEx)" introduces two languages for describing the expected structure of - and expressing constraints on - RDF graphs for the purposes of validation. "Linked Data" discusses the principles and best practices proposed by the Linked Data community for publishing interlinked (RDF) data on the Web, and how these techniques have been adopted. The final chapter highlights open problems and rounds out the coverage with a more general discussion on the future of the Web of Data. The book is intended for students, researchers and advanced practitioners interested in learning more about the Web of Data, and about closely related topics such as the Semantic Web, Knowledge Graphs, Linked Data, Graph Databases, Ontologies, etc. Offering a range of accessible examples and exercises, it can be used as a textbook for students and other newcomers to the field. It can also serve as a reference handbook for researchers and developers, as it offers up-to-date details on key standards (RDF, RDFS, OWL, SPARQL, SHACL, ShEx, RDB2RDF, LDP), along with formal definitions and references to further literature. The associated website webofdatabook.org offers a wealth of complementary material, including solutions to the exercises, slides for classes, raw data for examples, and a section for comments and questions.
This 2 volume-set of IFIP AICT 583 and 584 constitutes the refereed proceedings of the 16th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2020, held in Neos Marmaras, Greece, in June 2020.* The 70 full papers and 5 short papers presented were carefully reviewed and selected from 149 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: Part I: classification; clustering - unsupervised learning -analytics; image processing; learning algorithms; neural network modeling; object tracking - object detection systems; ontologies - AI; and sentiment analysis - recommender systems. Part II: AI ethics - law; AI constraints; deep learning - LSTM; fuzzy algebra - fuzzy systems; machine learning; medical - health systems; and natural language. *The conference was held virtually due to the COVID-19 pandemic.
This book discusses the impact of advanced information technologies, such as data processing, machine learning, and artificial intelligence, on organizational decision-making processes and practices. One of the book's central themes is the interplay between human reasoning and machine logic in the context of organizational functioning, specifically, the fairly common situations in which subjective beliefs are pitted against objective evidence giving rise to conflict rather than enhancing the quality of organizational sensemaking. Aiming to not only raise the awareness of the potential challenges but also to offer solutions, the book delineates and discusses the core impediments to effective human-information technology interactions, and outlines strategies for overcoming those obstacles on the way to enhancing the efficacy of organizational decision-making.
This book contains selected papers from the KES-IDT-2021 conference, being held as a virtual conference in June 14-16, 2021. The KES-IDT is an interdisciplinary conference with opportunities for the presentation of new research results and discussion about them under the common title "Intelligent Decision Technologies". The conference has been creating for years a platform for knowledge transfer and the generation of new ideas in the field of intelligent decision making. The range of topics discussed during the conference covered methods of classification, prediction, data analysis, big data, decision support, knowledge engineering, modeling, social networks and many more in areas such as finance, economy, management and transportation. The discussed topics covered also decision making for problems regarding the electric vehicle industry. The book contains also several sections devoted to specific topics, such as Advances in intelligent data processing and its applications Multi-criteria decision analysis methods Knowledge engineering in large-scale systems High-dimensional data analysis Spatial data analysis and sparse estimation Innovative technologies and applications in computer intelligence Intelligent diagnosis and monitoring of systems Decision making theory for economics.
This volume gathers the latest advances, innovations, and applications in the field of intelligent systems such as robots, cyber-physical and embedded systems, as presented by leading international researchers and engineers at the International Conference on Intelligent Technologies in Robotics (ITR), held in Moscow, Russia on October 21-23, 2019. It covers highly diverse topics, including robotics, design and machining, control and dynamics, bio-inspired systems, Internet of Thing, Big Data, RFID technology, blockchain, trusted software, cyber-physical systems (CFS) security, development of CFS in manufacturing, protection of information in CFS, cybersecurity of CFS. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that intelligent systems will drive the technological and societal change in the coming decades.
The book first explores the cybersecurity's landscape and the inherent susceptibility of online communication system such as e-mail, chat conversation and social media in cybercrimes. Common sources and resources of digital crimes, their causes and effects together with the emerging threats for society are illustrated in this book. This book not only explores the growing needs of cybersecurity and digital forensics but also investigates relevant technologies and methods to meet the said needs. Knowledge discovery, machine learning and data analytics are explored for collecting cyber-intelligence and forensics evidence on cybercrimes. Online communication documents, which are the main source of cybercrimes are investigated from two perspectives: the crime and the criminal. AI and machine learning methods are applied to detect illegal and criminal activities such as bot distribution, drug trafficking and child pornography. Authorship analysis is applied to identify the potential suspects and their social linguistics characteristics. Deep learning together with frequent pattern mining and link mining techniques are applied to trace the potential collaborators of the identified criminals. Finally, the aim of the book is not only to investigate the crimes and identify the potential suspects but, as well, to collect solid and precise forensics evidence to prosecute the suspects in the court of law.
How to Cheat at Windows Systems Administrators using Command line
scripts teaches system administrators hundreds of powerful,
time-saving tips for automating daily system administration tasks
using Windows command line scripts.
This book provides readers with a thorough understanding of various research areas within the field of data science. The book introduces readers to various techniques for data acquisition, extraction, and cleaning, data summarizing and modeling, data analysis and communication techniques, data science tools, deep learning, and various data science applications. Researchers can extract and conclude various future ideas and topics that could result in potential publications or thesis. Furthermore, this book contributes to Data Scientists' preparation and to enhancing their knowledge of the field. The book provides a rich collection of manuscripts in highly regarded data science topics, edited by professors with long experience in the field of data science. Introduces various techniques, methods, and algorithms adopted by Data Science experts Provides a detailed explanation of data science perceptions, reinforced by practical examples Presents a road map of future trends suitable for innovative data science research and practice
This book explores categories of applications and driving factors surrounding the Smart City phenomenon. The contributing authors provide perspective on the Smart Cities, covering numerous applications and classes of applications. The book uses a top-down exploration of the driving factors in Smart Cities, by including focal areas including "Smart Healthcare," "Public Safety & Policy Issues," and "Science, Technology, & Innovation." Contributors have direct and substantive experience with important aspects of Smart Cities and discuss issues with technologies & standards, roadblocks to implementation, innovations that create new opportunities, and other factors relevant to emerging Smart City infrastructures. Features an exploration of Smart City issues and solutions from a variety of stakeholders in the evolving field Presents conversational, nuanced, and forward thinking perspectives on Smart Cities, their implications, limitations, obstacles, and opportunities Includes contributions from industry insiders who have direct, relevant experience with their respective subjects as well as positioning and corporate stature
This edited book presents scientific results of the International Semi-Virtual Workshop on Software Engineering in IoT, Big data, Cloud and Mobile Computing (SE-ICBM 2020) which was held on October 15, 2020, at Soongsil University, Seoul, Korea. The aim of this workshop was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The workshop organizers selected the best papers from those papers accepted for presentation at the workshop. The papers were chosen based on review scores submitted by members of the program committee and underwent further rigorous rounds of review. From this second round of review, 17 of the conference's most promising papers are then published in this Springer (SCI) book and not the conference proceedings. We impatiently await the important contributions that we know these authors will bring to the field of computer and information science.
This edited book provides a platform to bring together researchers, academia and industry collaborators to exchange their knowledge and work to develop better understanding about the scope of blockchain technology in business management applications of different sectors such as retail sector, supply chain and logistics, healthcare sector, manufacturing sector, judiciary, finance and government sector in terms of data quality and timeliness. The book presents original unpublished research papers on blockchain technology and business management on novel architectures, prototypes and case studies.
This book presents a collection of state-of-the-art approaches to utilizing machine learning, formal knowledge bases and rule sets, and semantic reasoning to detect attacks on communication networks, including IoT infrastructures, to automate malicious code detection, to efficiently predict cyberattacks in enterprises, to identify malicious URLs and DGA-generated domain names, and to improve the security of mHealth wearables. This book details how analyzing the likelihood of vulnerability exploitation using machine learning classifiers can offer an alternative to traditional penetration testing solutions. In addition, the book describes a range of techniques that support data aggregation and data fusion to automate data-driven analytics in cyberthreat intelligence, allowing complex and previously unknown cyberthreats to be identified and classified, and countermeasures to be incorporated in novel incident response and intrusion detection mechanisms.
To develop and sustain competitive advantage in the marketplace, organizations depend critically on competence and resources, knowledge and information exchanged both within and across partner organizations, and on process integration and management. ""Semantic Web Technologies and E-Business: Toward the Integrated Virtual Organization and Business Process Automation"" presents research related to the application of semantic Web technologies, including semantic service-oriented architecture, semantic content management, and semantic knowledge sharing in e-business processes. ""Semantic Web Technologies and E-Business: Toward the Integrated Virtual Organization and Business Process Automation"" compiles research from experts around the globe, bringing business, managerial, technological, and implementation issues surrounding the application of semantic Web technologies in e-business to the forefront.
This book offer clear descriptions of the basic structure for the recognition and classification of human activities using different types of sensor module and smart devices in e.g. healthcare, education, monitoring the elderly, daily human behavior, and fitness monitoring. In addition, the complexities, challenges, and design issues involved in data collection, processing, and other fundamental stages along with datasets, methods, etc., are discussed in detail. The book offers a valuable resource for readers in the fields of pattern recognition, human-computer interaction, and the Internet of Things.
As it is with building a house, most of the work necessary to build a data warehouse is neither visible nor obvious when looking at the completed product. While it may be easy to plan for a data warehouse that incorporates all the right concepts, taking the steps needed to create a warehouse that is as functional and user-friendly as it is theoretically sound, is not especially easy. That's the challenge that Building and Maintaininga Data Warehouse answers. Based on a foundation of industry-accepted principles, this work provides an easy-to-follow approach that is cohesive and holistic. By offering the perspective of a successful data warehouse, as well as that of a failed one, this workdetails those factors that must be accomplished and those that are best avoided. Organized to logically progress from more general to specific information, this valuable guide: Presents areas of a data warehouse individually and in sequence, showing how each piece becomes a working part of the whole Examines the concepts and principles that are at the foundation of every successful data warehouse Explains how to recognize and attend to problematic gaps in an established data warehouse Provides the big picture perspective that planners and executives require Those considering the planning and creation of a data warehouse, as well as those who've already built one will profit greatly from the insights garnered by the author during his years of creating and gathering information on state-of-the-art data warehouses that are accessible, convenient, and reliable.
One of the infinite rewards to continuously advancing technology is an increased ease and precision in organizational techniques. Online data collection and online instruments are vital ways to electronically measure and assess organizational areas relevant to management, leadership, and human research development.Online Instruments, Data Collection, and Electronic Measurements: Organizational Advancements aims to assist researchers in both understanding and utilizing online data collection by providing methodological knowledge related to online research, and by presenting information about the empirical quality, the availability, and the location of specific online instruments. This book provides a strong focus on organizational leadership instruments while combining them with practical and ethical issues associated with online data collection. Such a combination makes this a unique contribution to the field.
Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.
Today, Information and Communication Technologies (ICT) have a pervasive presence in almost every aspect of the management of water. There is no question that the collection of big data from sensing and the insights gained by smart analytics can bring massive benefits. This book focuses on new perspectives for the monitoring, assessment and control of water systems, based on tools and concepts originating from the ICT sector. It presents a portrait of up-to-date sensing techniques for water, and introduces concepts and implications with the analysis of the acquired data. Particular attention is given to the advancements in developing novel devices and data processing approaches. The chapters guide the reader through multiple disciplinary contexts, without aiming to be exhaustive, but with the effort to present relevant topics in such a highly multi-disciplinary framework. This book will be of interest to advanced students, researchers and stakeholders at various levels.
This book includes selected papers presented at International Conference on Computational Intelligence, Data Science and Cloud Computing (IEM-ICDC) 2020, organized by the Department of Information Technology, Institute of Engineering & Management, Kolkata, India, during 25-27 September 2020. It presents substantial new research findings about AI and robotics, image processing and NLP, cloud computing and big data analytics as well as in cyber security, blockchain and IoT, and various allied fields. The book serves as a reference resource for researchers and practitioners in academia and industry. |
![]() ![]() You may like...
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, …
Hardcover
R8,709
Discovery Miles 87 090
Design of Micro- and Nanoparticles…
Pavel Padnya, Ivan Stoikov
Hardcover
Nanotechnology - Delivering on the…
H.N. Cheng, Laurence J. Doemeny, …
Hardcover
R5,127
Discovery Miles 51 270
|