![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases
Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often "messy" and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems. Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in space and time, and (3) pattern recognition for ecological sampling. Machine learning can be used to make predictive assessments even when relationships between variables are poorly understood. When traditional techniques fail to capture the relationship between variables, effective use of machine learning can unearth and capture previously unattainable insights into an ecosystem's complexity. Currently, many ecologists do not utilize machine learning as a part of the scientific process. This volume highlights how machine learning techniques can complement the traditional methodologies currently applied in this field.
As information technology is rapidly progressing, an enormous amount of media can be easily exchanged through Internet and other communication networks. Increasing amounts of digital image, video, and music have created numerous information security issues and is now taken as one of the top research and development agendas for researchers, organizations, and governments worldwide. ""Multimedia Forensics and Security"" provides an in-depth treatment of advancements in the emerging field of multimedia forensics and security by tackling challenging issues such as digital watermarking for copyright protection, digital fingerprinting for transaction tracking, and digital camera source identification.
The motivation of this edited book is to generate an understanding about information, related concepts and the roles they play in the modern, technology permeated world. In order to achieve our goal, we observe how information is understood in domains, such as cosmology, physics, biology, neuroscience, computer science, artificial intelligence, the Internet, big data, information society, or philosophy. Together, these observations form an integrated view so that readers can better understand this exciting building-block of modern-day society. On the surface, information is a relatively straightforward and intuitive concept. Underneath, however, information is a relatively versatile and mysterious entity. For instance, the way a physicist looks at information is not necessarily the same way as that of a biologist, a neuroscientist, a computer scientist, or a philosopher. Actually, when it comes to information, it is common that each field has its domain specific views, motivations, interpretations, definitions, methods, technologies, and challenges. With contributions by authors from a wide range of backgrounds, Understanding Information: From the Big Bang to Big Data will appeal to readers interested in the impact of 'information' on modern-day life from a variety of perspectives.
This book presents the latest research in the fields of computational intelligence, ubiquitous computing models, communication intelligence, communication security, machine learning, informatics, mobile computing, cloud computing and big data analytics. The best selected papers, presented at the International Conference on Innovative Data Communication Technologies and Application (ICIDCA 2020), are included in the book. The book focuses on the theory, design, analysis, implementation and applications of distributed systems and networks.
Online education and social interaction is on the rise. This new vehicle for human learning and communication opens the door for the latest exploration in emerging cyber fields.Evolving Psychological and Educational Perspectives on Cyber Behavior identifies learners' online behavior based on the theories in human psychology, defines online education phenomena as explained by the social and cognitive learning theories and principles, and interprets the complexity of cyber learning. This title offers a multi-disciplinary approach that incorporates the findings from brain research, biology, psychology, human cognition, developmental theory, sociology, motivation theory, and social behavior perfect for school teachers, counselors, researchers, and online designers.
This book presents a comprehensive review for Knowledge Engineering tools and techniques that can be used in Artificial Intelligence Planning and Scheduling. KE tools can be used to aid in the acquisition of knowledge and in the construction of domain models, which this book will illustrate. AI planning engines require a domain model which captures knowledge about how a particular domain works - e.g. the objects it contains and the available actions that can be used. However, encoding a planning domain model is not a straightforward task - a domain expert may be needed for their insight into the domain but this information must then be encoded in a suitable representation language. The development of such domain models is both time-consuming and error-prone. Due to these challenges, researchers have developed a number of automated tools and techniques to aid in the capture and representation of knowledge. This book targets researchers and professionals working in knowledge engineering, artificial intelligence and software engineering. Advanced-level students studying AI will also be interested in this book.
This book presents selected papers on Business Management and Technology, focusing on recent research in Business, Optimization, Technology, and Global Issues. Organized in four broad tracks, papers examine Management Challenges in Today's Industry, especially concerning changes in customer demands; Optimization Challenges in Today's Business, looking at efficiency and effectiveness in providing goods and services at affordable prices; Innovation in Hospitality and Tourism; and Technological Challenges in the Era of Globalization. The book covers both production systems and service systems, including the growing area of Information Technology, and also looks at the quality of work life in various sectors of business. It presents a balanced blend of theoretical and practical papers.
This book presents the design of delay-efficient packet schedulers for heterogeneous M2M uplink traffic classified into several classes, based on packet delay requirements, payload size, arrival process, etc. Specifically, the authors use tools from queuing theory to determine the delay-optimal scheduling policy. The proposed packet schedulers are designed for a generic M2M architecture and thus equally applicable to any M2M application. Additionally, due to their low implementation complexity and excellent delay-performance, they authors show how they are also well-suited for practical M2M systems. The book pertains primarily to real-time process scheduler experts in industry/academia and graduate students whose research deals with designing Quality-of-Service-aware packet schedulers for M2M packet schedulers over existing and future cellular infrastructure. Presents queuing theoretic analysis and optimization techniques used to design proposed packet scheduling strategies; Provides utility functions to precisely model diverse delay requirements, which lends itself to formulation of utility-maximization problems for determining the delay- or utility-optimal packet scheduler; Includes detail on low implementation complexity of the proposed scheduler by using iterative and distributed optimization techniques.
This book explores internet applications in which a crucial role is played by classification, such as spam filtering, recommender systems, malware detection, intrusion detection and sentiment analysis. It explains how such classification problems can be solved using various statistical and machine learning methods, including K nearest neighbours, Bayesian classifiers, the logit method, discriminant analysis, several kinds of artificial neural networks, support vector machines, classification trees and other kinds of rule-based methods, as well as random forests and other kinds of classifier ensembles. The book covers a wide range of available classification methods and their variants, not only those that have already been used in the considered kinds of applications, but also those that have the potential to be used in them in the future. The book is a valuable resource for post-graduate students and professionals alike.
This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models - based on researchers' insights - can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.
This book provides a deep analysis and wide coverage of the very strong trend in computer vision and visual indexing and retrieval, covering such topics as incorporation of models of Human Visual attention into analysis and retrieval tasks. It makes the bridge between psycho-visual modelling of Human Visual System and the classical and most recent models in visual content indexing and retrieval. The large spectrum of visual tasks, such as recognition of textures in static images, of actions in video content, image retrieval, different methods of visualization of images and multimedia content based on visual saliency are presented by the authors. Furthermore, the interest in visual content is modelled with the means of the latest classification models such as Deep Neural Networks is also covered in this book. This book is an exceptional resource as a secondary text for researchers and advanced level students, who are involved in the very wide research in computer vision, visual information indexing and retrieval. Professionals working in this field will also be interested in this book as a reference.
Data science has been playing a vital role in almost all major fields. Many researchers are interested in the development of IT applications, which are user-driven with a focus on issues. This can be addressed using data science. User-driven research and data science have gained much attention from many private, public, and government organizations and research institutions. The Handbook of Research on Designing User Interfaces With a Data Science Approach promotes the inclusion of more diversified users for user-centered designs of applications across domains and analyzes user data with a data science approach for effective and user-friendly user interface designs. It introduces the foundations of advanced topics of human-computer interaction, particularly with user-centered designs and techniques. Covering topics such as artificial neural networks, natural dialog systems, and machine learning, this book is an essential resource for faculty, research scholars, industry professionals, students of higher education, mathematicians, data scientists, interaction designers, visual designers, software engineers, user experience researchers, accessibility engineers, cognitive system engineers, academicians, and libraries.
This volume is focused on the emerging concept of Collaborative Innovation Networks (COINs). COINs are at the core of collaborative knowledge networks, distributed communities taking advantage of the wide connectivity and the support of communication technologies, spanning beyond the organizational perimeter of companies on a global scale. It includes the refereed conference papers from the 6th International Conference on COINs, June 8-11, 2016, in Rome, Italy. It includes papers for both application areas of COINs, (1) optimizing organizational creativity and performance, and (2) discovering and predicting new trends by identifying COINs on the Web through online social media analysis. Papers at COINs16 combine a wide range of interdisciplinary fields such as social network analysis, group dynamics, design and visualization, information systems and the psychology and sociality of collaboration, and intercultural analysis through the lens of online social media. They will cover most recent advances in areas from leadership and collaboration, trend prediction and data mining, to social competence and Internet communication.
This book contributes a basic framework for and specific insights into interdisciplinary connections between production, logistics, and traffic subsystems. The book is divided into two parts, the first of which presents an overview of interdisciplinarity in value-added networks and freight traffic. This includes an introduction to the topic and a description of an integrated framework of production, logistics, and traffic. Furthermore, it describes the barriers and challenges of interdisciplinary decision-making and project management. In turn, the second part presents domain-specific perspectives on interdisciplinary decision support, exploring domain-specific challenges of interdisciplinary interfaces and requirements for management methods and instruments from the standpoint of production management, logistics management, traffic management, and information technologies.
The book includes both invited and contributed chapters dealing with advanced methods and theoretical development for the analysis of social networks and applications in numerous disciplines. Some authors explore new trends related to network measures, multilevel networks and clustering on networks, while other contributions deepen the relationship among statistical methods for data mining and social network analysis. Along with the new methodological developments, the book offers interesting applications to a wide set of fields, ranging from the organizational and economic studies, collaboration and innovation, to the less usual field of poetry. In addition, the case studies are related to local context, showing how the substantive reasoning is fundamental in social network analysis. The list of authors includes both top scholars in the field of social networks and promising young researchers. All chapters passed a double blind review process followed by the guest editors. This edited volume will appeal to students, researchers and professionals.
This book presents a comprehensive framework for IoT, including its architectures, security, privacy, network communications, and protocols. The book starts by providing an overview of the aforementioned research topics, future directions and open challenges that face the IoT development. The authors then discuss the main architectures in the field, which include Three- and Five-Layer Architectures, Cloud and Fog Based Architectures, a Social IoT Application Architecture. In the security chapter, the authors outline threats and attacks, privacy preservation, trust and authentication, IoT data security, and social awareness. The final chapter presents case studies including smart home, wearables, connected cars, industrial Internet, smart cities, IoT in agriculture, smart retail, energy engagement, IoT in healthcare, and IoT in poultry and farming. Discusses ongoing research into the connection of the physical and virtual worlds; Includes the architecture, security, privacy, communications, and protocols of IoT; Presents a variety of case studies in IoT including wearables, smart cities, and energy management.
This book presents multibiometric watermarking techniques for security of biometric data. This book also covers transform domain multibiometric watermarking techniques and their advantages and limitations. The authors have developed novel watermarking techniques with a combination of Compressive Sensing (CS) theory for the security of biometric data at the system database of the biometric system. The authors show how these techniques offer higher robustness, authenticity, better imperceptibility, increased payload capacity, and secure biometric watermarks. They show how to use the CS theory for the security of biometric watermarks before embedding into the host biometric data. The suggested methods may find potential applications in the security of biometric data at various banking applications, access control of laboratories, nuclear power stations, military base, and airports.
This book reviews IoT-centric vulnerabilities from a multidimensional perspective by elaborating on IoT attack vectors, their impacts on well-known security objectives, attacks which exploit such vulnerabilities, coupled with their corresponding remediation methodologies. This book further highlights the severity of the IoT problem at large, through disclosing incidents of Internet-scale IoT exploitations, while putting forward a preliminary prototype and associated results to aid in the IoT mitigation objective. Moreover, this book summarizes and discloses findings, inferences, and open challenges to inspire future research addressing theoretical and empirical aspects related to the imperative topic of IoT security. At least 20 billion devices will be connected to the Internet in the next few years. Many of these devices transmit critical and sensitive system and personal data in real-time. Collectively known as "the Internet of Things" (IoT), this market represents a $267 billion per year industry. As valuable as this market is, security spending on the sector barely breaks 1%. Indeed, while IoT vendors continue to push more IoT devices to market, the security of these devices has often fallen in priority, making them easier to exploit. This drastically threatens the privacy of the consumers and the safety of mission-critical systems. This book is intended for cybersecurity researchers and advanced-level students in computer science. Developers and operators working in this field, who are eager to comprehend the vulnerabilities of the Internet of Things (IoT) paradigm and understand the severity of accompanied security issues will also be interested in this book.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted form this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are seen in finance (banking, brokerage, insurance), marketing (customer relationships, retailing, logistics, travel), as well as in manufacturing, health care, fraud detection, home-land security, and law enforcement.
This book highlights research in linking and mining data from across varied data sources. The authors focus on recent advances in this burgeoning field of multi-source data fusion, with an emphasis on exploratory and unsupervised data analysis, an area of increasing significance with the pace of growth of data vastly outpacing any chance of labeling them manually. The book looks at the underlying algorithms and technologies that facilitate the area within big data analytics, it covers their applications across domains such as smarter transportation, social media, fake news detection and enterprise search among others. This book enables readers to understand a spectrum of advances in this emerging area, and it will hopefully empower them to leverage and develop methods in multi-source data fusion and analytics with applications to a variety of scenarios. Includes advances on unsupervised, semi-supervised and supervised approaches to heterogeneous data linkage and fusion; Covers use cases of analytics over multi-view and heterogeneous data from across a variety of domains such as fake news, smarter transportation and social media, among others; Provides a high-level overview of advances in this emerging field and empowers the reader to explore novel applications and methodologies that would enrich the field.
This book offers a systematic introduction to an understanding-oriented approach to multimedia content analysis. It integrates the visual understanding and learning models into a unified framework, within which the visual understanding guides the model learning while the learned models improve the visual understanding. More specifically, it discusses multimedia content representations and analysis including feature selection, feature extraction, image tagging, user-oriented tag recommendation and understanding-oriented multimedia applications. The book was nominated by the University of Chinese Academy of Sciences and China Computer Federation as an outstanding PhD thesis. By providing the fundamental technologies and state-of-the-art methods, it is a valuable resource for graduate students and researchers working in the field computer vision and machine learning.
This book offers a self-contained guide to the theory and main applications of soft sets. It introduces readers to the basic concepts, the algebraic and topological structures, as well as hybrid structures, such as fuzzy soft sets and intuitionistic fuzzy sets. The last part of the book explores a range of interesting applications in the fields of decision-making, pattern recognition, and data science. All in all, the book provides graduate students and researchers in mathematics and various applied science fields with a comprehensive and timely reference guide to soft sets.
This edited volume features a wide spectrum of the latest computer science research relating to cyber deception. Specifically, it features work from the areas of artificial intelligence, game theory, programming languages, graph theory, and more. The work presented in this book highlights the complex and multi-facted aspects of cyber deception, identifies the new scientific problems that will emerge in the domain as a result of the complexity, and presents novel approaches to these problems. This book can be used as a text for a graduate-level survey/seminar course on cutting-edge computer science research relating to cyber-security, or as a supplemental text for a regular graduate-level course on cyber-security.
Activities in data warehousing and mining are constantly emerging. Data mining methods, algorithms, online analytical processes, data mart and practical issues consistently evolve, providing a challenge for professionals in the field. ""Research and Trends in Data Mining Technologies and Applications"" focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real-world problems. This book provides an international perspective, highlighting solutions to some of researchers' toughest challenges. Developments in the knowledge discovery process, data models, structures, and design serve as answers and solutions to these emerging challenges.
This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations. |
![]() ![]() You may like...
Dynamo 1 Pupil Book (Key Stage 3 French…
Clive Bell, Gill Ramage
Paperback
R765
Discovery Miles 7 650
Pearson REVISE AQA GCSE Spanish Revision…
Vivien Halksworth
Paperback
![]() R276 Discovery Miles 2 760
|