![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases
The optimization of traffic management operations has become a considerable challenge in today's global scope due to the significant increase in the number of vehicles, traffic congestions, and automobile accidents. Fortunately, there has been substantial progress in the application of intelligent computing devices to transportation processes. Vehicular ad-hoc networks (VANETs) are a specific practice that merges the connectivity of wireless technologies with smart vehicles. Despite its relevance, empirical research is lacking on the developments being made in VANETs and how certain intelligent technologies are being applied within transportation systems. IoT and Cloud Computing Advancements in Vehicular Ad-Hoc Networks provides emerging research exploring the theoretical and practical aspects of intelligent transportation systems and analyzing the modern techniques that are being applied to smart vehicles through cloud technology. Featuring coverage on a broad range of topics such as health monitoring, node localization, and fault tolerance, this book is ideally designed for network designers, developers, analysists, IT specialists, computing professionals, researchers, academics, and post-graduate students seeking current research on emerging computing concepts and developments in vehicular ad-hoc networks.
Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Translation and communication between cultures can sometimes be a difficult process. Image-based assessments can offer a way for large populations to be tested on different subjects without having to create multiple testing programs. Cross-Cultural Analysis of Image-Based Assessments: Emerging Research and Opportunities is an innovative resource that offers insight into the application of visual assessments across a global and intercultural context. Highlighting applicable topics which include visual literacy, psychological assessments, assessment development, and equivalency measurements, this publication is ideal for psychologists, therapists, and researchers who would like to stay current on the most efficient way to test multi-cultural populations in various fields of knowledge.
Emerging technologies continue to affect a variety of industries, making processes more effective and efficient. However, they also impact society by promoting opportunities to encourage social change and socioeconomic advancement. Blockchain is one that is already influencing third world countries and disrupting the globe. Blockchain Technology for Global Social Change is an essential research publication that provides insight into advancements being made in blockchain and some potential applications of the technology that can improve the lives of individuals in emerging markets. This publication covers a range of topics such as digital government, health systems, and urbanization and is ideal for policymakers, academicians, researchers, sociologists, government officials, economists, and financial experts seeking current and relevant research on evolving blockchain technologies.
Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.
Information systems development underwent many changes as systems transitioned onto web-based forums. Complemented by advancements in security and technology, internet-based systems have become an information mainstay. The Handbook of Research on Contemporary Perspectives on Web-Based Systems is a critical scholarly resource that examines relevant theoretical frameworks, current practice guidelines, industry standards, and the latest empirical research findings in web-based systems. Featuring coverage on a wide range of topics such as data integration, mobile applications, and semantic web, this publication is geared toward computer engineers, IT specialists, software designers, professionals, researchers, and upper-level students seeking current and relevant research on the prevalence of these systems and advancements made to them.
Multimedia represents information in novel and varied formats. One of the most prevalent examples of continuous media is video. Extracting underlying data from these videos can be an arduous task. From video indexing, surveillance, and mining, complex computational applications are required to process this data. Intelligent Analysis of Multimedia Information is a pivotal reference source for the latest scholarly research on the implementation of innovative techniques to a broad spectrum of multimedia applications by presenting emerging methods in continuous media processing and manipulation. This book offers a fresh perspective for students and researchers of information technology, media professionals, and programmers.
The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration. The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it. In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization.
For any organization, analysis of performance and effectiveness through available data allows for informed decision making. Data envelopment analysis, or DEA, is a popular, effective method that can be used to measure productive efficiency in operations management assessment. Data Envelopment Analysis and Effective Performance Assessment addresses the myriad of practical uses and innovative developments of DEA. Emphasizing the importance of analyzing productivity by measuring inputs, goals, economic growth, and performance, this book covers a wide breadth of innovative knowledge. This book is essential reading for managers, business professionals, students of business and ICT, and computer engineers.
Recent innovations have created significant developments in data storage and management. These new technologies now allow for greater security in databases and other applications. Decentralized Computing Using Block Chain Technologies and Smart Contracts: Emerging Research and Opportunities is a concise and informative source of academic research on the latest developments in block chain innovation and their application in contractual agreements. Highlighting pivotal discussions on topics such as cryptography, programming techniques, and decentralized computing, this book is an ideal publication for researchers, academics, professionals, students, and practitioners seeking content on utilizing block chains with smart contracts.
For Database Systems and Database Design and Application courses offered at the junior, senior and graduate levels in Computer Science departments. Written by well-known computer scientists, this introduction to database systems offers a comprehensive approach, focusing on database design, database use, and implementation of database applications and database management systems. The first half of the book provides in-depth coverage of databases from the point of view of the database designer, user, and application programmer. It covers the latest database standards SQL:1999, SQL/PSM, SQL/CLI, JDBC, ODL, and XML, with broader coverage of SQL than most other texts. The second half of the book provides in-depth coverage of databases from the point of view of the DBMS implementor. It focuses on storage structures, query processing, and transaction management. The book covers the main techniques in these areas with broader coverage of query optimisation than most other texts, along with advanced topics including multidimensional and bitmap indexes, distributed transactions, and information integration techniques.
In today's digital world, the huge amount of data being generated is unstructured, messy, and chaotic in nature. Dealing with such data, and attempting to unfold the meaningful information, can be a challenging task. Feature engineering is a process to transform such data into a suitable form that better assists with interpretation and visualization. Through this method, the transformed data is more transparent to the machine learning models, which in turn causes better prediction and analysis of results. Data science is crucial for the data scientist to assess the trade-offs of their decisions regarding the effectiveness of the machine learning model implemented. Investigating the demand in this area today and in the future is a necessity. The Handbook of Research on Automated Feature Engineering and Advanced Applications in Data Science provides an in-depth analysis on both the theoretical and the latest empirical research findings on how features can be extracted and transformed from raw data. The chapters will introduce feature engineering and the recent concepts, methods, and applications with the use of various data types, as well as examine the latest machine learning applications on the data. While highlighting topics such as detection, tracking, selection techniques, and prediction models using data science, this book is ideally intended for research scholars, big data scientists, project developers, data analysts, and computer scientists along with practitioners, researchers, academicians, and students interested in feature engineering and its impact on data.
Diversity in user queries makes it challenging for search engines to effectively return a set of relevant results. Both user intentions to search the web and types of queries are vastly varied; consequently, horizontal and vertical search engines are developed to answer user queries more efficiently. However, these search engines present a variety of problems in web searching. Result Page Generation for Web Searching: Emerging Research and Opportunities is an essential reference publication that focuses on taking advantages from text and web mining in order to address the issues of recommendation and visualization in web searching. Highlighting a wide range of topics such as navigational searching, resource identification, and ambiguous queries, this book is ideally designed for computer engineers, web designers, programmers, academicians, researchers, and students.
Digital libraries have been established worldwide to make information more readily available, and this innovation has changed the way information seekers interact with the data they are collecting. Faced with decentralized, heterogeneous sources, these users must be familiarized with high-level search activities in order to sift through large amounts of data. Information Seeking Behavior and Challenges in Digital Libraries addresses the problems of usability and search optimization in digital libraries. With topics addressing all aspects of information seeking activity, the research found in this book provides insight into library user experiences and human-computer interaction when searching online databases of all types. This book addresses the challenges faced by professionals in information management, librarians, developers, students of library science, and policy makers.
In recent decades, the industrial revolution has increased economic growth despite its immersion in global environmental issues such as climate change. Researchers emphasize the adoption of circular economy practices in global supply chains and businesses for better socio-environmental sustainability without compromising economic growth. Integrating blockchain technology into business practices could promote the circular economy as well as global environmental sustainability. Integrating Blockchain Technology Into the Circular Economy discusses the technological advancements in circular economy practices, which provide better results for both economic growth and environmental sustainability. It provides relevant theoretical frameworks and the latest empirical research findings in the applications of blockchain technology. Covering topics such as big data analytics, financial market infrastructure, and sustainable performance, this book is an essential resource for managers, operations managers, executives, manufacturers, environmentalists, researchers, industry practitioners, students and educators of higher education, and academicians.
Data mapping in a data warehouse is the process of creating a link between two distinct data models' (source and target) tables/attributes. Data mapping is required at many stages of DW life-cycle to help save processor overhead; every stage has its own unique requirements and challenges. Therefore, many data warehouse professionals want to learn data mapping in order to move from an ETL (extract, transform, and load data between databases) developer to a data modeler role. Data Mapping for Data Warehouse Design provides basic and advanced knowledge about business intelligence and data warehouse concepts including real life scenarios that apply the standard techniques to projects across various domains. After reading this book, readers will understand the importance of data mapping across the data warehouse life cycle.
Data Simplification: Taming Information With Open Source Tools addresses the simple fact that modern data is too big and complex to analyze in its native form. Data simplification is the process whereby large and complex data is rendered usable. Complex data must be simplified before it can be analyzed, but the process of data simplification is anything but simple, requiring a specialized set of skills and tools. This book provides data scientists from every scientific discipline with the methods and tools to simplify their data for immediate analysis or long-term storage in a form that can be readily repurposed or integrated with other data. Drawing upon years of practical experience, and using numerous examples and use cases, Jules Berman discusses the principles, methods, and tools that must be studied and mastered to achieve data simplification, open source tools, free utilities and snippets of code that can be reused and repurposed to simplify data, natural language processing and machine translation as a tool to simplify data, and data summarization and visualization and the role they play in making data useful for the end user.
The effective application of knowledge management principles has proven to be beneficial for modern organizations. When utilized in the academic community, these frameworks can enhance the value and quality of research initiatives. Enhancing Academic Research With Knowledge Management Principles is a pivotal reference source for the latest research on implementing theoretical frameworks of information management in the context of academia and universities. Featuring extensive coverage on relevant areas such as data mining, organizational and academic culture, this publication is an ideal resource for researchers, academics, practitioners, professionals, and students.
The world is witnessing the growth of a global movement facilitated by technology and social media. Fueled by information, this movement contains enormous potential to create more accountable, efficient, responsive, and effective governments and businesses, as well as spurring economic growth. Big Data Governance and Perspectives in Knowledge Management is a collection of innovative research on the methods and applications of applying robust processes around data, and aligning organizations and skillsets around those processes. Highlighting a range of topics including data analytics, prediction analysis, and software development, this book is ideally designed for academicians, researchers, information science professionals, software developers, computer engineers, graduate-level computer science students, policymakers, and managers seeking current research on the convergence of big data and information governance as two major trends in information management.
Faced with the exponential development of Big Data and both its legal and economic repercussions, we are still slightly in the dark concerning the use of digital information. In the perpetual balance between confidentiality and transparency, this data will lead us to call into question how we understand certain paradigms, such as the Hippocratic Oath in medicine. As a consequence, a reflection on the study of the risks associated with the ethical issues surrounding the design and manipulation of this "massive data" seems to be essential. This book provides a direction and ethical value to these significant volumes of data. It proposes an ethical analysis model and recommendations to better keep this data in check. This empirical and ethico-technical approach brings together the first aspects of a moral framework directed toward thought, conscience and the responsibility of citizens concerned by the use of data of a personal nature.
Advances in Computers carries on a tradition of excellence, presenting detailed coverage of innovations in computer hardware, software, theory, design, and applications. The book provides contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles typically allow. The articles included in this book will become standard references, with lasting value in this rapidly expanding field.
Vehicular traffic congestion and accidents remain universal issues in today's world. Due to the continued growth in the use of vehicles, optimizing traffic management operations is an immense challenge. To reduce the number of traffic accidents, improve the performance of transportation systems, enhance road safety, and protect the environment, vehicular ad-hoc networks have been introduced. Current developments in wireless communication, computing paradigms, big data, and cloud computing enable the enhancement of these networks, equipped with wireless communication capabilities and high-performance processing tools. Cloud-Based Big Data Analytics in Vehicular Ad-Hoc Networks is a pivotal reference source that provides vital research on cloud and data analytic applications in intelligent transportation systems. While highlighting topics such as location routing, accident detection, and data warehousing, this publication addresses future challenges in vehicular ad-hoc networks and presents viable solutions. This book is ideally designed for researchers, computer scientists, engineers, automobile industry professionals, IT practitioners, academicians, and students seeking current research on cloud computing models in vehicular networks. |
You may like...
Machine Learning, Big Data, and IoT for…
Pardeep Kumar, Yugal Kumar, …
Paperback
R2,657
Discovery Miles 26 570
Artificial Intelligence Applications in…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R7,997
Discovery Miles 79 970
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha
Paperback
R3,925
Discovery Miles 39 250
Handbook of Research on Emerging Trends…
Arun Solanki, Sandeep Kumar, …
Hardcover
R10,356
Discovery Miles 103 560
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
R3,950
Discovery Miles 39 500
Machine Learning in Medicine - Part Two
Ton J. Cleophas, Aeilko H. Zwinderman
Hardcover
R1,423
Discovery Miles 14 230
|