![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases
Digital libraries have been established worldwide to make information more readily available, and this innovation has changed the way information seekers interact with the data they are collecting. Faced with decentralized, heterogeneous sources, these users must be familiarized with high-level search activities in order to sift through large amounts of data. Information Seeking Behavior and Challenges in Digital Libraries addresses the problems of usability and search optimization in digital libraries. With topics addressing all aspects of information seeking activity, the research found in this book provides insight into library user experiences and human-computer interaction when searching online databases of all types. This book addresses the challenges faced by professionals in information management, librarians, developers, students of library science, and policy makers.
Learn application security from the very start, with this comprehensive and approachable guide! Alice and Bob Learn Application Security is an accessible and thorough resource for anyone seeking to incorporate, from the beginning of the System Development Life Cycle, best security practices in software development. This book covers all the basic subjects such as threat modeling and security testing, but also dives deep into more complex and advanced topics for securing modern software systems and architectures. Throughout, the book offers analogies, stories of the characters Alice and Bob, real-life examples, technical explanations and diagrams to ensure maximum clarity of the many abstract and complicated subjects. Topics include: Secure requirements, design, coding, and deployment Security Testing (all forms) Common Pitfalls Application Security Programs Securing Modern Applications Software Developer Security Hygiene Alice and Bob Learn Application Security is perfect for aspiring application security engineers and practicing software developers, as well as software project managers, penetration testers, and chief information security officers who seek to build or improve their application security programs. Alice and Bob Learn Application Security illustrates all the included concepts with easy-to-understand examples and concrete practical applications, furthering the reader's ability to grasp and retain the foundational and advanced topics contained within.
Relational databases have been predominant for many years and are used throughout various industries. The current system faces challenges related to size and variety of data thus the NoSQL databases emerged. By joining these two database models, there is room for crucial developments in the field of computer science. Bridging Relational and NoSQL Databases is an innovative source of academic content on the convergence process between databases and describes key features of the next database generation. Featuring coverage on a wide variety of topics and perspectives such as BASE approach, CAP theorem, and hybrid and native solutions, this publication is ideally designed for professionals and researchers interested in the features and collaboration of relational and NoSQL databases.
The world is witnessing the growth of a global movement facilitated by technology and social media. Fueled by information, this movement contains enormous potential to create more accountable, efficient, responsive, and effective governments and businesses, as well as spurring economic growth. Big Data Governance and Perspectives in Knowledge Management is a collection of innovative research on the methods and applications of applying robust processes around data, and aligning organizations and skillsets around those processes. Highlighting a range of topics including data analytics, prediction analysis, and software development, this book is ideally designed for academicians, researchers, information science professionals, software developers, computer engineers, graduate-level computer science students, policymakers, and managers seeking current research on the convergence of big data and information governance as two major trends in information management.
The aim of the book is to help students become data scientists. Since this requires a series of courses over a considerable period of time, the book intends to accompany students from the beginning to an advanced understanding of the knowledge and skills that define a modern data scientist. The book presents a comprehensive overview of the mathematical foundations of the programming language R and of its applications to data science.
Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct-most notably cheating-however, e-Learning services are often designed and implemented without considering security requirements. This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time. The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS
The effective application of knowledge management principles has proven to be beneficial for modern organizations. When utilized in the academic community, these frameworks can enhance the value and quality of research initiatives. Enhancing Academic Research With Knowledge Management Principles is a pivotal reference source for the latest research on implementing theoretical frameworks of information management in the context of academia and universities. Featuring extensive coverage on relevant areas such as data mining, organizational and academic culture, this publication is an ideal resource for researchers, academics, practitioners, professionals, and students.
Data Simplification: Taming Information With Open Source Tools addresses the simple fact that modern data is too big and complex to analyze in its native form. Data simplification is the process whereby large and complex data is rendered usable. Complex data must be simplified before it can be analyzed, but the process of data simplification is anything but simple, requiring a specialized set of skills and tools. This book provides data scientists from every scientific discipline with the methods and tools to simplify their data for immediate analysis or long-term storage in a form that can be readily repurposed or integrated with other data. Drawing upon years of practical experience, and using numerous examples and use cases, Jules Berman discusses the principles, methods, and tools that must be studied and mastered to achieve data simplification, open source tools, free utilities and snippets of code that can be reused and repurposed to simplify data, natural language processing and machine translation as a tool to simplify data, and data summarization and visualization and the role they play in making data useful for the end user.
Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering.
In recent decades, the industrial revolution has increased economic growth despite its immersion in global environmental issues such as climate change. Researchers emphasize the adoption of circular economy practices in global supply chains and businesses for better socio-environmental sustainability without compromising economic growth. Integrating blockchain technology into business practices could promote the circular economy as well as global environmental sustainability. Integrating Blockchain Technology Into the Circular Economy discusses the technological advancements in circular economy practices, which provide better results for both economic growth and environmental sustainability. It provides relevant theoretical frameworks and the latest empirical research findings in the applications of blockchain technology. Covering topics such as big data analytics, financial market infrastructure, and sustainable performance, this book is an essential resource for managers, operations managers, executives, manufacturers, environmentalists, researchers, industry practitioners, students and educators of higher education, and academicians.
Advances in Computers carries on a tradition of excellence, presenting detailed coverage of innovations in computer hardware, software, theory, design, and applications. The book provides contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles typically allow. The articles included in this book will become standard references, with lasting value in this rapidly expanding field.
This book constitutes the refereed post-conference proceedings of the Fourth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2021, held in Chennai, India, in March 2021. The 20 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.
Data mapping in a data warehouse is the process of creating a link between two distinct data models' (source and target) tables/attributes. Data mapping is required at many stages of DW life-cycle to help save processor overhead; every stage has its own unique requirements and challenges. Therefore, many data warehouse professionals want to learn data mapping in order to move from an ETL (extract, transform, and load data between databases) developer to a data modeler role. Data Mapping for Data Warehouse Design provides basic and advanced knowledge about business intelligence and data warehouse concepts including real life scenarios that apply the standard techniques to projects across various domains. After reading this book, readers will understand the importance of data mapping across the data warehouse life cycle.
Across numerous industries in modern society, there is a constant need to gather precise and relevant data efficiently and quickly. As such, it is imperative to research new methods and approaches to increase productivity in these areas. Next-Generation Information Retrieval and Knowledge Resources Management is a key source on the latest advancements in multidisciplinary research methods and applications and examines effective techniques for managing and utilizing information resources. Featuring extensive coverage across a range of relevant perspectives and topics, such as knowledge discovery, spatial indexing, and data mining, this book is ideally designed for researchers, graduate students, academics, and industry professionals seeking ways to optimize knowledge management processes.
Jump-start your career as a data scientist--learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that's dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn't cover SQL broadly. Instead, you'll learn the subset of SQL skills that data analysts and data scientists use frequently. You'll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner's perspective, moving your data scientist career forward!
High-performance computing (HPC) describes the use of connected computing units to perform complex tasks. It relies on parallelization techniques and algorithms to synchronize these disparate units in order to perform faster than a single processor could, alone. Used in industries from medicine and research to military and higher education, this method of computing allows for users to complete complex data-intensive tasks. This field has undergone many changes over the past decade, and will continue to grow in popularity in the coming years. Innovative Research Applications in Next-Generation High Performance Computing aims to address the future challenges, advances, and applications of HPC and related technologies. As the need for such processors increases, so does the importance of developing new ways to optimize the performance of these supercomputers. This timely publication provides comprehensive information for researchers, students in ICT, program developers, military and government organizations, and business professionals.
"What information do these data reveal?" "Is the information correct?" "How can I make the best use of the information?" The widespread use of computers and our reliance on the data generated by them have made these questions increasingly common and important. Computerized data may be in either digital or analog form and may be relevant to a wide range of applications that include medical monitoring and diagnosis, scientific research, engineering, quality control, seismology, meteorology, political and economic analysis and business and personal financial applications. The sources of the data may be databases that have been developed for specific purposes or may be of more general interest and include those that are accessible on the Internet. In addition, the data may represent either single or multiple parameters. Examining data in its initial form is often very laborious and also makes it possible to "miss the forest for the trees" by failing to notice patterns in the data that are not readily apparent. To address these problems, this monograph describes several accurate and efficient methods for displaying, reviewing and analyzing digital and analog data. The methods may be used either singly or in various combinations to maximize the value of the data to those for whom it is relevant. None of the methods requires special devices and each can be used on common platforms such as personal computers, tablets and smart phones. Also, each of the methods can be easily employed utilizing widely available off-the-shelf software. Using the methods does not require special expertise in computer science or technology, graphical design or statistical analysis. The usefulness and accuracy of all the described methods of data display, review and interpretation have been confirmed in multiple carefully performed studies using independent, objective endpoints. These studies and their results are described in the monograph. Because of their ease of use, accuracy and efficiency, the methods for displaying, reviewing and analyzing data described in this monograph can be highly useful to all who must work with computerized information and make decisions based upon it.
The WWW era made billions of people dramatically dependent on the progress of data technologies, out of which Internet search and Big Data are arguably the most notable. Structured Search paradigm connects them via a fundamental concept of key-objects evolving out of keywords as the units of search. The key-object data model and KeySQL revamp the data independence principle making it applicable for Big Data and complement NoSQL with full-blown structured querying functionality. The ultimate goal is extracting Big Information from the Big Data. As a Big Data Consultant, Mikhail Gilula combines academic background with 20 years of industry experience in the database and data warehousing technologies working as a Sr. Data Architect for Teradata, Alcatel-Lucent, and PayPal, among others. He has authored three books, including The Set Model for Database and Information Systems and holds four US Patents in Structured Search and Data Integration.
Blockchain technology presents numerous advantages that include increased transparency, reduced transaction costs, faster transaction settlement, automation of information, increased traceability, improved customer experience, improved digital identity, better cyber security, and user-controlled networks. These potential applications are widespread and diverse including funds transfer, smart contracts, e-voting, efficient supply chain, and more in nearly every sector of society including finance, healthcare, law, trade, real estate, and other important areas. However, there are challenges and limitations that exist such as high energy consumption, limited scalability, complexity, security, network size, lack of regulations, and other critical issues. Nevertheless, blockchain is an attractive technology and has much to offer to the modern-day industry. Industry Use Cases on Blockchain Technology Applications in IoT and the Financial Sector investigates blockchain technology's adoption and effectiveness in multiple industries and for the internet of things (IoT)-based applications, presents use cases from industrial and financial sectors as well as from other transaction-based services, and fills a gap in this respect by extending the existing body of knowledge in the suggested field. While highlighting topics such as cybersecurity, use cases, and models for blockchain implementation, this book is ideal for business managers, financial accountants, practitioners, researchers, academicians, and students interested in blockchain technology's role and implementation in IoT and the financial sector.
Although some IoT systems are built for simple event control where a sensor signal triggers a corresponding reaction, many events are far more complex, requiring applications to interpret the event using analytical techniques to initiate proper actions. Artificial intelligence of things (AIoT) applies intelligence to the edge and gives devices the ability to understand the data, observe the environment around them, and decide what to do best with minimum human intervention. With the power of AI, AIoT devices are not just messengers feeding information to control centers. They have evolved into intelligent machines capable of performing self-driven analytics and acting independently. A smart environment uses technologies such as wearable devices, IoT, and mobile internet to dynamically access information, connect people, materials and institutions, and then actively manages and responds to the ecosystem's needs in an intelligent manner. In this edited book, the authors present challenges, technologies, applications and future trends of AI-enabled IoT (AIoT) in realizing smart and intelligent environments, including frameworks and methodologies to apply AIoT in monitoring devices and environments, tools and practices most applicable to product or service development to solve innovation problems, advanced and innovative techniques and practical implementations to enhance future smart environment systems as. They plan to cover a broad range of applications including smart cities, smart transportation and smart agriculture. This book is a valuable resource for industry and academic researchers, scientists, engineers and advanced students in the fields of ICTs and networking, IoT, AI and machine and deep learning, data science, sensing, robotics, automation and smart technologies and smart environments.
Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.
The rapid advancements in telecommunications, computing hardware and software, and data encryption, and the widespread use of electronic data processing and electronic business conducted through the Internet have led to a strong increase in information security threats. The latest advances in information security have increased practical deployments and scalability across a wide range of applications to better secure and protect our information systems and the information stored, processed and transmitted. This book outlines key emerging trends in information security from the foundations and technologies in biometrics, cybersecurity, and big data security to applications in hardware and embedded systems security, computer forensics, the Internet of Things security, and network security. Information Security: Foundations, technologies and applications is a comprehensive review of cutting-edge algorithms, technologies, and applications, and provides new insights into a range of fundamentally important topics in the field. This up-to-date body of knowledge is essential reading for researchers and advanced students in information security, and for professionals in sectors where information security is required. |
![]() ![]() You may like...
The Sourcebook of Parallel Computing
Jack Dongarra, Ian Foster, …
Hardcover
R2,109
Discovery Miles 21 090
Internet and Distributed Computing…
Jemal H. Abawajy, Mukaddim Pathan, …
Hardcover
R5,358
Discovery Miles 53 580
Designing Sorting Networks - A New…
Sherenaz W. Al-Haj Baddar, Kenneth E. Batcher
Hardcover
R1,510
Discovery Miles 15 100
|