![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases
"Introduction to Data Mining" presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Cryptography is concerned with the construction of schemes that withstand any abuse. A cryptographic scheme is constructed so as to maintain a desired functionality, even under malicious attempts aimed at making it deviate from its prescribed behavior. The design of cryptographic systems must be based on firm foundations, whereas ad hoc approaches and heuristics are a very dangerous way to go. These foundations were developed mostly in the 1980s, in works that are all co-authored by Shafi Goldwasser and/or Silvio Micali. These works have transformed cryptography from an engineering discipline, lacking sound theoretical foundations, into a scientific field possessing a well-founded theory, which influences practice as well as contributes to other areas of theoretical computer science. This book celebrates these works, which were the basis for bestowing the 2012 A.M. Turing Award upon Shafi Goldwasser and Silvio Micali. A significant portion of this book reproduces some of these works, and another portion consists of scientific perspectives by some of their former students. The highlight of the book is provided by a few chapters that allow the readers to meet Shafi and Silvio in person. These include interviews with them, their biographies and their Turing Award lectures.
Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering.
In recent decades, the industrial revolution has increased economic growth despite its immersion in global environmental issues such as climate change. Researchers emphasize the adoption of circular economy practices in global supply chains and businesses for better socio-environmental sustainability without compromising economic growth. Integrating blockchain technology into business practices could promote the circular economy as well as global environmental sustainability. Integrating Blockchain Technology Into the Circular Economy discusses the technological advancements in circular economy practices, which provide better results for both economic growth and environmental sustainability. It provides relevant theoretical frameworks and the latest empirical research findings in the applications of blockchain technology. Covering topics such as big data analytics, financial market infrastructure, and sustainable performance, this book is an essential resource for managers, operations managers, executives, manufacturers, environmentalists, researchers, industry practitioners, students and educators of higher education, and academicians.
This book constitutes the refereed post-conference proceedings of the Fourth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2021, held in Chennai, India, in March 2021. The 20 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.
Across numerous industries in modern society, there is a constant need to gather precise and relevant data efficiently and quickly. As such, it is imperative to research new methods and approaches to increase productivity in these areas. Next-Generation Information Retrieval and Knowledge Resources Management is a key source on the latest advancements in multidisciplinary research methods and applications and examines effective techniques for managing and utilizing information resources. Featuring extensive coverage across a range of relevant perspectives and topics, such as knowledge discovery, spatial indexing, and data mining, this book is ideally designed for researchers, graduate students, academics, and industry professionals seeking ways to optimize knowledge management processes.
MESH ist ein mathematisches Video ber vielfl chige Netzwerke und ihre Rolle in der Geometrie, der Numerik und der Computergraphik. Der unter Anwendung der neuesten Technologie vollst ndig computergenierte Film spannt einen Bogen von der antiken griechischen Mathematik zum Gebiet der heutigen geometrischen Modellierung. MESH hat zahlreiche wissenschaftliche Preise weltweit gewonnen. Die Autoren sind Konrad Polthier, ein Professor der Mathematik, und Beau Janzen, ein professioneller Filmdirektor. Der Film ist ein ausgezeichnetes Lehrmittel f r Kurse in Geometrie, Visualisierung, wissenschaftlichem Rechnen und geometrischer Modellierung an Universit ten, Zentren f r wissenschaftliches Rechnen, kann jedoch auch an Schulen genutzt werden.
High-performance computing (HPC) describes the use of connected computing units to perform complex tasks. It relies on parallelization techniques and algorithms to synchronize these disparate units in order to perform faster than a single processor could, alone. Used in industries from medicine and research to military and higher education, this method of computing allows for users to complete complex data-intensive tasks. This field has undergone many changes over the past decade, and will continue to grow in popularity in the coming years. Innovative Research Applications in Next-Generation High Performance Computing aims to address the future challenges, advances, and applications of HPC and related technologies. As the need for such processors increases, so does the importance of developing new ways to optimize the performance of these supercomputers. This timely publication provides comprehensive information for researchers, students in ICT, program developers, military and government organizations, and business professionals.
Blockchain technology presents numerous advantages that include increased transparency, reduced transaction costs, faster transaction settlement, automation of information, increased traceability, improved customer experience, improved digital identity, better cyber security, and user-controlled networks. These potential applications are widespread and diverse including funds transfer, smart contracts, e-voting, efficient supply chain, and more in nearly every sector of society including finance, healthcare, law, trade, real estate, and other important areas. However, there are challenges and limitations that exist such as high energy consumption, limited scalability, complexity, security, network size, lack of regulations, and other critical issues. Nevertheless, blockchain is an attractive technology and has much to offer to the modern-day industry. Industry Use Cases on Blockchain Technology Applications in IoT and the Financial Sector investigates blockchain technology's adoption and effectiveness in multiple industries and for the internet of things (IoT)-based applications, presents use cases from industrial and financial sectors as well as from other transaction-based services, and fills a gap in this respect by extending the existing body of knowledge in the suggested field. While highlighting topics such as cybersecurity, use cases, and models for blockchain implementation, this book is ideal for business managers, financial accountants, practitioners, researchers, academicians, and students interested in blockchain technology's role and implementation in IoT and the financial sector.
Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.
This book paves the road for researchers from various areas of engineering working in the realm of smart cities to discuss the intersections in these areas when it comes to infrastructure and its flexibility. The authors lay out models, algorithms and frameworks related to the 'smartness' in the future smart cities. In particular, manufacturing firms, electric generation, transmission and distribution utilities, hardware and software computer companies, automation and control manufacturing firms, and other industries will be able to use this book to enhance their energy operations, improve their comfort and privacy, as well as to increase the benefit from the electrical system. The book pertains to researchers, professionals, and R&D in an array of industries.
Fuzzy cognitive maps (FCMs) have gained popularity in the scientific community due to their capabilities in modeling and decision making for complex problems.This book presents a novel algorithm called glassoFCM to enable automatic learning of FCM models from data. Specifically, glassoFCM is a combination of two methods, glasso (a technique originated from machine learning) for data modeling and FCM simulation for decision making. The book outlines that glassoFCM elaborates simple, accurate, and more stable models that are easy to interpret and offer meaningful decisions. The research results presented are based on an investigation related to a real-world business intelligence problem to evaluate characteristics that influence employee work readiness.Finally, this book provides readers with a step-by-step guide of the 'fcm' package to execute and visualize their policies and decisions through the FCM simulation process.
Due to the tremendous amount of data generated daily from fields such as business, research, and sciences, big data is everywhere. Therefore, alternative management and processing methods have to be created to handle this complex and unstructured data size. Big Data Management, Technologies, and Applications discusses the exponential growth of information size and the innovative methods for data capture, storage, sharing, and analysis for big data. With its prevalence, this collection of articles on big data methodologies and technologies are beneficial for IT workers, researchers, students, and practitioners in this timely field.
"Big data" has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. The Handbook of Research on Big Data Management and Applications explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data.
Online survey research suites offer a vast array of capabilities, supporting the presentation of virtually every type of digital data - text, imagery, audio, video, and multimedia forms. With some researcher sophistication, these online survey research suites can enable a wide range of quantitative, qualitative, and mixed methods research. Online Survey Design and Data Analytics: Emerging Research and Opportunities is a critical scholarly resource that explores the utilization of online platforms for setting up surveys to achieve a specific result, eliciting data in in-depth ways and applying creative analytics methods to online survey data. Highlighting topics such as coding, education-based analysis, and online Delphi studies, this publication is ideal for researchers, professionals, academicians, data analysts, IT consultants, and students.
Jump-start your career as a data scientist--learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that's dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn't cover SQL broadly. Instead, you'll learn the subset of SQL skills that data analysts and data scientists use frequently. You'll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner's perspective, moving your data scientist career forward!
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)
This book summarizes recent inventions, provides guidelines and recommendations, and demonstrates many practical applications of homomorphic encryption. This collection of papers represents the combined wisdom of the community of leading experts on Homomorphic Encryption. In the past 3 years, a global community consisting of researchers in academia, industry, and government, has been working closely to standardize homomorphic encryption. This is the first publication of whitepapers created by these experts that comprehensively describes the scientific inventions, presents a concrete security analysis, and broadly discusses applicable use scenarios and markets. This book also features a collection of privacy-preserving machine learning applications powered by homomorphic encryption designed by groups of top graduate students worldwide at the Private AI Bootcamp hosted by Microsoft Research. The volume aims to connect non-expert readers with this important new cryptographic technology in an accessible and actionable way. Readers who have heard good things about homomorphic encryption but are not familiar with the details will find this book full of inspiration. Readers who have preconceived biases based on out-of-date knowledge will see the recent progress made by industrial and academic pioneers on optimizing and standardizing this technology. A clear picture of how homomorphic encryption works, how to use it to solve real-world problems, and how to efficiently strengthen privacy protection, will naturally become clear.
Websites are a central part of today's business world; however, with the vast amount of information that constantly changes and the frequency of required updates, this can come at a high cost to modern businesses. Web Data Mining and the Development of Knowledge-Based Decision Support Systems is a key reference source on decision support systems in view of end user accessibility and identifies methods for extraction and analysis of useful information from web documents. Featuring extensive coverage across a range of relevant perspectives and topics, such as semantic web, machine learning, and expert systems, this book is ideally designed for web developers, internet users, online application developers, researchers, and faculty.
Method engineering is a very young field. Generally, method engineering can be considered from engineering of an entire methodology for information systems development to engineering of modeling techniques according to project requirements. Computer aided method engineering is about generation and use of information systems design techniques according to user needs. Some times such environments are called generic tools or MetaCASE. Computer-Aided Method Engineering: Designing Case Repositories for the 21st Century presents a contribution on a methodology and architecture of a CASE repository, forwarding a theory that will bring about the component based development into CASE tool design and development covering a repository construction principle for the 21st century.
Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios. Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students. |
![]() ![]() You may like...
Viola Concerto (Oleg, Prazac Quartet…
Jindrich Feld, Prazak Quartet, …
CD
R327
Discovery Miles 3 270
|