|
Books > Computing & IT > Applications of computing > Databases
Over the last two decades, researchers are looking at imbalanced
data learning as a prominent research area. Many critical
real-world application areas like finance, health, network, news,
online advertisement, social network media, and weather have
imbalanced data, which emphasizes the research necessity for
real-time implications of precise fraud/defaulter detection, rare
disease/reaction prediction, network intrusion detection, fake news
detection, fraud advertisement detection, cyber bullying
identification, disaster events prediction, and more. Machine
learning algorithms are based on the heuristic of
equally-distributed balanced data and provide the biased result
towards the majority data class, which is not acceptable
considering imbalanced data is omnipresent in real-life scenarios
and is forcing us to learn from imbalanced data for foolproof
application design. Imbalanced data is multifaceted and demands a
new perception using the novelty at sampling approach of data
preprocessing, an active learning approach, and a cost perceptive
approach to resolve data imbalance. The Handbook of Research on
Data Preprocessing, Active Learning, and Cost Perceptive Approaches
for Resolving Data Imbalance offers new aspects for imbalanced data
learning by providing the advancements of the traditional methods,
with respect to big data, through case studies and research from
experts in academia, engineering, and industry. The chapters
provide theoretical frameworks and the latest empirical research
findings that help to improve the understanding of the impact of
imbalanced data and its resolving techniques based on data
preprocessing, active learning, and cost perceptive approaches.
This book is ideal for data scientists, data analysts, engineers,
practitioners, researchers, academicians, and students looking for
more information on imbalanced data characteristics and solutions
using varied approaches.
The success of many companies through the assistance of bitcoin
proves that technology continually dominates and transforms how
economics operate. However, a deeper, more conceptual understanding
of how these technologies work to identify innovation opportunities
and how to successfully thrive in an increasingly competitive
environment is needed for the entrepreneurs of tomorrow.
Transforming Businesses With Bitcoin Mining and Blockchain
Applications provides innovative insights into IT infrastructure
and emerging trends in the realm of digital business technologies.
This publication analyzes and extracts information from Bitcoin
networks and provides the necessary steps to designing open
blockchain. Highlighting topics that include financial markets,
risk management, and smart technologies, the research contained
within the title is ideal for entrepreneurs, business
professionals, managers, executives, academicians, researchers, and
business students.
Data-Driven Solutions to Transportation Problems explores the
fundamental principle of analyzing different types of
transportation-related data using methodologies such as the data
fusion model, the big data mining approach, computer vision-enabled
traffic sensing data analysis, and machine learning. The book
examines the state-of-the-art in data-enabled methodologies,
technologies and applications in transportation. Readers will learn
how to solve problems relating to energy efficiency under connected
vehicle environments, urban travel behavior, trajectory data-based
travel pattern identification, public transportation analysis,
traffic signal control efficiency, optimizing traffic networks
network, and much more.
Multinational organizations have begun to realize that sentiment
mining plays an important role for decision making and market
strategy. The revolutionary growth of digital marketing not only
changes the market game, but also brings forth new opportunities
for skilled professionals and expertise. Currently, the
technologies are rapidly changing, and artificial intelligence (AI)
and machine learning are contributing as game-changing
technologies. These are not only trending but are also increasingly
popular among data scientists and data analysts. New Opportunities
for Sentiment Analysis and Information Processing provides
interdisciplinary research in information retrieval and sentiment
analysis including studies on extracting sentiments from textual
data, sentiment visualization-based dimensionality reduction for
multiple features, and deep learning-based multi-domain sentiment
extraction. The book also optimizes techniques used for sentiment
identification and examines applications of sentiment analysis and
emotion detection. Covering such topics as communication networks,
natural language processing, and semantic analysis, this book is
essential for data scientists, data analysts, IT specialists,
scientists, researchers, academicians, and students.
|
You may like...
A Guide To SQL
Philip Pratt, Hassan Afyouni, …
Paperback
R1,336
R1,236
Discovery Miles 12 360
|