|
|
Books > Computing & IT > Applications of computing > Databases
Handbook of Research on Blockchain Technology presents the latest
information on the adaptation and implementation of Blockchain
technologies in real world business, scientific, healthcare and
biomedical applications. The book's editors present the rapid
advancements in existing business models by applying Blockchain
techniques. Novel architectural solutions in the deployment of
Blockchain comprise the core aspects of this book. Several use
cases with IoT, biomedical engineering, and smart cities are also
incorporated. As Blockchain is a relatively new technology that
exploits decentralized networks and is used in many sectors for
reliable, cost-effective and rapid business transactions, this book
is a welcomed addition on existing knowledge. Financial services,
retail, insurance, logistics, supply chain, public sectors and
biomedical industries are now investing in Blockchain research and
technologies for their business growth. Blockchain prevents double
spending in financial transactions without the need of a trusted
authority or central server. It is a decentralized ledger platform
that facilitates verifiable transactions between parties in a
secure and smart way.
In the computer science industry, high levels of performance remain
the focal point in software engineering. This quest has made
current systems exceedingly complex, as practitioners strive to
discover novel approaches to increase the capabilities of modern
computer structures. A prevalent area of research in recent years
is scalable transaction processing and its usage in large databases
and cloud computing. Despite its popularity, there remains a need
for significant research in the understanding of scalability and
its performance within distributed databases. Handling Priority
Inversion in Time-Constrained Distributed Databases provides
emerging research exploring the theoretical and practical aspects
of database transaction processing frameworks and improving their
performance using modern technologies and algorithms. Featuring
coverage on a broad range of topics such as consistency mechanisms,
real-time systems, and replica management, this book is ideally
designed for IT professionals, computing specialists, developers,
researchers, data engineers, executives, academics, and students
seeking research on current trends and developments in distributed
computing and databases.
BIG DATA, ARTIFICIAL INTELLIGENCE AND DATA ANALYSIS SET Coordinated
by Jacques Janssen Data analysis is a scientific field that
continues to grow enormously, most notably over the last few
decades, following rapid growth within the tech industry, as well
as the wide applicability of computational techniques alongside new
advances in analytic tools. Modeling enables data analysts to
identify relationships, make predictions, and to understand,
interpret and visualize the extracted information more
strategically. This book includes the most recent advances on this
topic, meeting increasing demand from wide circles of the
scientific community. Applied Modeling Techniques and Data Analysis
1 is a collective work by a number of leading scientists, analysts,
engineers, mathematicians and statisticians, working on the front
end of data analysis and modeling applications. The chapters cover
a cross section of current concerns and research interests in the
above scientific areas. The collected material is divided into
appropriate sections to provide the reader with both theoretical
and applied information on data analysis methods, models and
techniques, along with appropriate applications.
The concept of quantum computing is based on two fundamental
principles of quantum mechanics: superposition and entanglement.
Instead of using bits, qubits are used in quantum computing, which
is a key indicator in the high level of safety and security this
type of cryptography ensures. If interfered with or eavesdropped
in, qubits will delete or refuse to send, which keeps the
information safe. This is vital in the current era where sensitive
and important personal information can be digitally shared online.
In computer networks, a large amount of data is transferred
worldwide daily, including anything from military plans to a
country's sensitive information, and data breaches can be
disastrous. This is where quantum cryptography comes into play. By
not being dependent on computational power, it can easily replace
classical cryptography. Limitations and Future Applications of
Quantum Cryptography is a critical reference that provides
knowledge on the basics of IoT infrastructure using quantum
cryptography, the differences between classical and quantum
cryptography, and the future aspects and developments in this
field. The chapters cover themes that span from the usage of
quantum cryptography in healthcare, to forensics, and more. While
highlighting topics such as 5G networks, image processing,
algorithms, and quantum machine learning, this book is ideally
intended for security professionals, IoT developers, computer
scientists, practitioners, researchers, academicians, and students
interested in the most recent research on quantum computing.
Medical and information communication technology professionals are
working to develop robust classification techniques, especially in
healthcare data/image analysis, to ensure quick diagnoses and
treatments to patients. Without fast and immediate access to
healthcare databases and information, medical professionals'
success rates and treatment options become limited and fall to
disastrous levels. Advanced Classification Techniques for
Healthcare Analysis provides emerging insight into classification
techniques in delivering quality, accurate, and affordable
healthcare, while also discussing the impact health data has on
medical treatments. Featuring coverage on a broad range of topics
such as early diagnosis, brain-computer interface, metaheuristic
algorithms, clustering techniques, learning schemes, and mobile
telemedicine, this book is ideal for medical professionals,
healthcare administrators, engineers, researchers, academicians,
and technology developers seeking current research on furthering
information and communication technology that improves patient
care.
Over the last two decades, researchers are looking at imbalanced
data learning as a prominent research area. Many critical
real-world application areas like finance, health, network, news,
online advertisement, social network media, and weather have
imbalanced data, which emphasizes the research necessity for
real-time implications of precise fraud/defaulter detection, rare
disease/reaction prediction, network intrusion detection, fake news
detection, fraud advertisement detection, cyber bullying
identification, disaster events prediction, and more. Machine
learning algorithms are based on the heuristic of
equally-distributed balanced data and provide the biased result
towards the majority data class, which is not acceptable
considering imbalanced data is omnipresent in real-life scenarios
and is forcing us to learn from imbalanced data for foolproof
application design. Imbalanced data is multifaceted and demands a
new perception using the novelty at sampling approach of data
preprocessing, an active learning approach, and a cost perceptive
approach to resolve data imbalance. The Handbook of Research on
Data Preprocessing, Active Learning, and Cost Perceptive Approaches
for Resolving Data Imbalance offers new aspects for imbalanced data
learning by providing the advancements of the traditional methods,
with respect to big data, through case studies and research from
experts in academia, engineering, and industry. The chapters
provide theoretical frameworks and the latest empirical research
findings that help to improve the understanding of the impact of
imbalanced data and its resolving techniques based on data
preprocessing, active learning, and cost perceptive approaches.
This book is ideal for data scientists, data analysts, engineers,
practitioners, researchers, academicians, and students looking for
more information on imbalanced data characteristics and solutions
using varied approaches.
Communication based on the internet of things (IoT) generates huge
amounts of data from sensors over time, which opens a wide range of
applications and areas for researchers. The application of
analytics, machine learning, and deep learning techniques over such
a large volume of data is a very challenging task. Therefore, it is
essential to find patterns, retrieve novel insights, and predict
future behavior using this large amount of sensory data. Artificial
intelligence (AI) has an important role in facilitating analytics
and learning in the IoT devices. Applying AI-Based IoT Systems to
Simulation-Based Information Retrieval provides relevant frameworks
and the latest empirical research findings in the area. It is ideal
for professionals who wish to improve their understanding of the
strategic role of trust at different levels of the information and
knowledge society and trust at the levels of the global economy,
networks and organizations, teams and work groups, information
systems, and individuals as actors in the networked environments.
Covering topics such as blockchain visualization, computer-aided
drug discovery, and health monitoring, this premier reference
source is an excellent resource for business leaders and
executives, IT managers, security professionals, data scientists,
students and faculty of higher education, librarians, hospital
administrators, researchers, and academicians.
Blockchain technology allows value exchange without the need for a
central authority and ensures trust powered by its decentralized
architecture. As such, the growing use of the internet of things
(IoT) and the rise of artificial intelligence (AI) are to be
benefited immensely by this technology that can offer devices and
applications data security, decentralization, accountability, and
reliable authentication. Bringing together blockchain technology,
AI, and IoT can allow these tools to complement the strengths and
weaknesses of the others and make systems more efficient.
Multidisciplinary Functions of Blockchain Technology in AI and IoT
Applications deliberates upon prospects of blockchain technology
using AI and IoT devices in various application domains. This book
contains a comprehensive collection of chapters on machine
learning, IoT, and AI in areas that include security issues of IoT,
farming, supply chain management, predictive analytics, and natural
languages processing. While highlighting these areas, the book is
ideally intended for IT industry professionals, students of
computer science and software engineering, computer scientists,
practitioners, stakeholders, researchers, and academicians
interested in updated and advanced research surrounding the
functions of blockchain technology in AI and IoT applications
across diverse fields of research.
This updated compendium provides the linear algebra background
necessary to understand and develop linear algebra applications in
data mining and machine learning.Basic knowledge and advanced new
topics (spectral theory, singular values, decomposition techniques
for matrices, tensors and multidimensional arrays) are presented
together with several applications of linear algebra (k-means
clustering, biplots, least square approximations, dimensionality
reduction techniques, tensors and multidimensional arrays).The
useful reference text includes more than 600 exercises and
supplements, many with completed solutions and MATLAB
applications.The volume benefits professionals, academics,
researchers and graduate students in the fields of pattern
recognition/image analysis, AI, machine learning and databases.
|
|