![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Fibre optics
Within a few short years, fiber optics has skyrocketed from an interesting laboratory experiment to a billion-dollar industry. But with such meteoric growth and recent, exciting advances, even references published less than five years ago are already out of date. The Fiber Optics Illustrated Dictionary fills a gap in the literature by providing instructors, hobbyists, and top-level engineers with an accessible, current reference. From the author of the best-selling Telecommunications Illustrated Dictionary, this comprehensive reference includes fundamental physics, basic technical information for fiber splicing, installation, maintenance, and repair, and follow-up information for communications and other professionals using fiber optic components. Well-balanced, well-researched, and extensively cross-referenced, it also includes hundreds of photographs, charts, and diagrams that clarify the more complex ideas and put simpler ideas into their applications context. Fiber optics is a vibrant field, not just in terms of its growth and increasing sophistication, but also in terms of the people, places, and details that make up this challenging and rewarding industry. In addition to furnishing an authoritative, up-to-date resource for relevant industry definitions, this dictionary introduces many exciting recent applications as well as hinting at emerging future technologies.
Prepared by six leading professionals in the industry, this comprehensive reference helps you better understand the basic phenomena behind OF amplifiers -- and gives you the practical knowledge you need to design and produce OF systems. Includes 180 equations and nearly 240 illustrations.
A fibre Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fibre that reflects particular wavelengths of light and transmits all the others. As such, FBGs can be used as inline optical filters to block certain wavelengths, or as wavelength-specific reflectors. Applications include optical fibre communications, sensors and fibre lasers. This book addresses the critical challenge of developing Fibre Bragg Gratings (FBGs) for applications as sensors in harsh and space environment. Coverage ranges from the basic principles through design, fabrication, and testing to their industrial implementation. A thorough review includes the in-depth examination of the FBGs properties and the most important developments in devices and applications. A particular emphasis is given to the applications of fibre optic sensors in the space environment, which is characterized mainly by vacuum, high thermal gradients, mechanical vibrations and various types of cosmic radiation. The book concludes with a summary and overview of challenges faced by FBG technology. The book is supplemented by an extensive survey of published papers, books and conference reports. As an added benefit, the book is structured in such a way as to provide useful and in-depth training and skills development to graduate/undergraduate students, specialised engineers, and academic/industrial experts.
Plastic Optical Fiber Sensors cover the fundamentals and applications of a new class of fiber sensors. With contributions from leading academics in the area, this book covers the theory of plastic optical fiber sensors or (POFs), as well as applications in oil, gas, biotechnology, and energy fields. Using multiple examples, the editors showcase the advantageous characteristics of POFs, such as ease of handling, large diameter, inexpensive peripheral components and simple termination tools. By doing so, the editors assert that there has been a proliferation of the use of POFs in new consumer products. The book also highlights uses for building various products, such as a POF sensor for oil trucker valve monitoring, a monitoring system for high voltage substation switch, an oil leaking sensor for offshore platforms and a solar tracker for illumination. Including over 300 black and white images, this book would be highly beneficial for professionals in manufacturing as well as academics in universities, particularly those who use optical fiber sensors on a regular basis.
This book provides a step-by-step discussion through each topic of fiber optics. Each chapter explores theoretical concepts of principles and then applies them by using experimental cases with numerous illustrations. The book works systematically through fiber optic cables, advanced fiber optic cables, light attenuation in optical components, fiber optic cable types and installations, fiber optic connectors, passive fiber optic devices, wavelength division multiplexing, optical amplifiers, optical receivers, opto-mechanical switches, and optical fiber communications. It includes important chapters in fiber optic lighting, fiber optics testing, and laboratory safety.
The need for both intrinsic and extrinsic fiber optic sensor technologies continues to grow. To meet the demands of this fast expanding applications-driven market, Fiber Optic Sensors, Second Edition presents both the latest advances in fiber optic sensor technology, such as the application of photonic crystal fibers to fiber optic gyroscopes, and recent application opportunities, including the use of fiber optic sensors as a minimally invasive medical treatment. The new edition of this seminal work highlights the development of fiber optic sensors, while providing an overview of current methods for the construction of high-speed and high-capacity fiber optic systems. Two new chapters cover topics such as femtosecond laser illumination inscription and the growing application sector of fiber optic chemical and biological sensors. Adding significant new material, the book continues to provide a progressive history of each sensor type as well as basic principles and fundamental building blocks for practical applications in the electrical aerospace, defense and manufacturing, smart structure, undersea surveillance, medical, and gas and oil industries.
This book reflects the substantial progress made in the area of optical fibers and provides for the first time a systematic description of linear and non-linear fiber devices, including fiber couplers, splices, connectors, multiplexers, switches, and modulators. Primarily aimed at advanced undergraduate and graduate students in optics, optoelectronics, applied physics, and electrical and electronic engineering, this book serves as a valuable reference for scientists and engineers working in optoelectronics and related fields in industry and academic. Topics include coupling, devices based on coupling effect with non-polarized light, devices using polarized light, devices based on nonlinearities, and devices based on rare earth doped fibers.
Discusses the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section Presents a single approach based on the M. Berry formula Describes the topological competition between different optical vortices in a superposition Demonstrates the stability of the topological charge to random phase distortions and insensitivity to amplitude distortions Contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space and the topological charge is preserved
The book provides an introduction of surface plasmons and presents its applications in the sensing of various chemical and biological analyses using optical fiber technology. The field is developed by introducing the surface plasmons for semi-infinite metal-dielectric interface with discussion of their propagation length and penetration depth. Practical issues with the excitation of surface plasmons in different configurations and in various geometries including various means of their excitation have also been included. The book discusses the essential components of fiber optic sensors, their functions and the performance parameters along with the theoretical description of fiber optic Surface Plasmon Resonance (SPR) sensors with respect to various light launching conditions. The fabrication methods and protocols used for the fabrication of the fiber optic SPR chemical and biosensors have been described. Some fiber optic sensing applications based on SPR phenomena and various issues, such as sensitivity enhancement, influence of external stimuli etc, have been an important part of the book.The book will help beginners as well as established researchers in understanding the fundamentals and advancements of optical fiber plasmonic sensor technology. The book contains both the rigorous theory and the experimental techniques of SPR and related variety of sensors.
This study is designed for graduate technicians working in laboratories or quality test offices, as well as academics and industrial researchers in optical communications and optical sensors and students attending postgraudate courses on optical engineering. It aims to provide a survey of the methods for fiber optics experimental characterization and includes details of each technique, including basic concepts, critical aspects of their practical implementation, and estimates on the accuracy and repeatability of the results obtained from the measurements. The discussion also covers commercially available field testing equipment.
Gain a Deep, Practical Understanding of 5G Technology, Applications, Architecture, Standards, and Ecosystem The 5G ultra-high-speed wireless communication standard is a major technological leap forward--substantially increasing speed and capacity, enhancing current use cases, and making many new applications practical. For technical professionals, managers, and students, 5G requires significant new knowledge and expertise. In 5G Wireless: A Comprehensive Introduction, renowned information technology author William Stallings presents a comprehensive and unified explanation of 5G's key applications, technologies, and standards. Like Stallings' other award-winning texts, this guide will help you quickly find the information and gain the mastery to succeed with critical new technology. Stallings first explains how cellular networks have evolved through 4G and now 5G, and surveys 5G's application areas and use cases. Next, he thoroughly introduces the 5G core network, covering SDN, NFV, network slicing, QoS, and edge computing--and provides a detailed coverage of the 5G air interface and radio access network. Throughout, key concepts are illuminated through realistic examples, review questions help you test your understanding, and references support further exploration. Understand the 5G ecosystem, its building blocks, standards, and R&D roadmaps Explore the Enhanced Mobile Broadband (eMBB) use case, where 5G enhances 4G in applications such as smart offices and dense urban communications Learn how Massive Machine Type Communications (mMTC) and Ultra-Reliable and Low-Latency Communications (URLCC) support new applications such as fog, IoT, and cloud Discover how 5G NextGen core (backbone) networks serve and interconnect wireless access networks that connect user devices Master key 5G NR Air Interface and Radio Access Network (RAN) concepts, including millimeter-wave transmission, MIMO antennas, and OFDM multiplexing
Total coverage of photonics for students and engineers developing fiber and integrated optics systems Elements of Photonics is a textbook and reference that treats the connection between photons and electrons. This second volume focuses specifically on photonics for fiber and integrated optics. Topics essential to modern optical communication systems–including optical fibers, quantum electronics, optical amplifiers, lasers, and solitons, among others–are discussed in detail with abundant practical examples. A concluding chapter that applies the design skills developed throughout Volumes I and II to realistic problems in fiber optic communications makes this the ideal textbook and resource for engineers developing fiber optic communication systems as well as for students aspiring to this career. Volume II of Elements of Photonics also includes detailed sections on the following topics:
The combination of laser and optoelectronics with optical fiber technology can enhance the seamless activities of fiber-optic communications and fiber-sensor arena. This book discusses foundations of laser technology, non-linear optics, laser and fiber-optic applications in telecommunication and sensing fields including fundamentals and recent developments in photonics technology. Accumulated chapters cover constituent materials, techniques of measurement of non-linear optical properties of nanomaterials, photonic crystals and pertinent applications in medical, high voltage engineering and, in optical computations and designing logic gates.
Fiber Optic Video Transmission: The Complete Guide is the only
comprehensive reference to the techniques and hardware required to
transmit video signals over optical fiber. As the broadcast
industry moves to HDTV and enhanced television standards become the
norm, fiber will become the medium of choice for video
transmission, and this book is the essential guide to transmitting
video over fiber optic cables.
Discusses the essential principles, operating characteristics, and cur rent technology of the main fiber laser and amplifier devices based on rare-earth-doped silica and fluorozirconate fibers. Describes the pri nciples, designs, and properties of the erbium-doped fiber amplifier a nd its role as the cornerstone component in optical communication syst ems. Second Edition contains more than 75% new or revised materials re flecting major developments in academia and industry.
This book delivers information and analysis on fiber in the subscriber loop, and elucidates the competitive advantages to be gained by implementation. The book analyzes engineering, economic and policy issues involved in the deployment of residential fiber optics networks. The text includes a comparison between the telephone and cable television industries, addresses which services can be economically provided by a fiber network, predicts who is likely to deliver those services and describes the most efficient network architecture.
This book updates the advancements made in the level of achievable integration of optical circuits and components in the last ten years-highlighting the commercial success of particular devices as well as introducing multiple facets of integrated optics. Written by experts from companies and countries around the world and indexed for easy reference with nearly 800 citations, Integrated Optical Circuits and Components explores factors involved in moving technology from concept to end use provides an overview of the close coupling between drive technology capability and requirements for successful systems applications describes the fabrication process and the design and performance of the multiplexer discusses the creation and behavior of erbium doped waveguide devices in glass and in lithium niobate explains the use of silicon in the hybrid integration of optical devices considers the employment of integrated optics in chemical and biochemical sensors examines the layout and operation of complex devices such as optical switch arrays and dynamic wavelength routing devices analyzes the problem of optimal crosstalk in depth and applies crosstalk analysis to semiconductor amplifier switch matrices includes descriptions of currently available device modeling software and more Containing over 400 illustrations, tables, figures, and equations, and focusing on established commercial technologies applicable for on-the-job challenges, Integrated Optical Circuits and Components is a comprehensive multidisciplinary reference suitable for optical, electrical, and electronics engineers; research and applied physicists; quality and technical managers in the optoelectronics industry; and upper-level undergraduate and graduate students in these disciplines. Here are some of the prestigious companies representing an international view of integrated optical circuit and component design and application: Akzo Nobel Central Research, Arnh
The focus of this book lies at the meeting point of electromagnetic waveguides and photonic crystals. Although these are both widely studied topics, they have been kept apart until recently. The purpose of the first edition of this book was to give state-of-the-art theoretical and numerical viewpoints about exotic fibres which use "photonic crystal effects" and consequently exhibit some remarkable properties. Since that first edition, photonic crystal fibres have become an important and effective optical device. In this second edition, the description of the theoretical and numerical tools used to study these fibres is enhanced, whilst up-to-date information about the properties, applications and fabrication of these fibres is added.
Optical communications involves the transmission of information via optical fibres. Since the use of optical fibres for information transmission became widespread during the 1980s, the pace of technological advances in this area has been astounding. This second edition has been completely updated and revised throughout to reduce much of the mathematics, and to focus on those specific optical technologies that have emerged since the first edition. It presents new material on critical topics in the field, such as digital communications, fibre optics and lightwave networks. The text also integrates both fibre and space optics and emphasizes the systems aspects of optical communications.
The fiber laser, with its humble beginning in the late 1980s, has undergone tremendous development in the past decade or so, transforming itself from a research curiosity to a major force in modern manufacturing. Today, it is revolutionizing our economy by fundamentally changing the way we mark, machine, and process materials on an industrial scale. The recent development of high-power fiber lasers is also fundamentally shaping a wide range of other areas from physical sciences and medicine to geology and space exploration. In the past few years, the tactical deployment of direct energy weapons based on fiber lasers has become a reality. The development of fiber lasers is rooted in a number of technical areas including optical materials, optical waveguide design, nonlinear optics, optical fiber fabrication, and optical characterization, in addition to optical fiber components, and fiber laser design and architecture. No comprehensive in-depth coverage of such diverse topical areas has appeared in a single book. Many important developments have taken place in the past decade in both academia and industry. This book comprehensively covers the basics, technology and applications of fiber lasers including up-to-date developments in both academia and industry and is aimed to serve as both an introduction and research aid for graduate students, engineers, and scientists who are new to this field and also for veterans in the field |
![]() ![]() You may like...
Advanced Programming in the UNIX…
W Stevens, Stephen Rago
Paperback
|