![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Fibre optics
This book focuses on optical fiber sensing and structural health monitoring technologies. It provides detailed information on the basic theory of F-P optical fiber sensors, fiber Bragg grating sensors, fiber laser grating sensors and fully distributed optical fiber sensors. Drawing on the authors' research achievements and many years of practical experience in the field of engineering structure health monitoring, the book elaborates on the structural principle, design and manufacture of optical fiber sensors and monitoring technologies, and briefly describes advances made with regard to multiple engineering structures.
This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.
This is a guide to the design and application of elliptical dielectric waveguides and fibers. Written by one of the pioneers of optical fiber technology, it shows the theoretical basis of the technology, demonstrates the practical uses for elliptical fibers, guides the reader through design criteria and trade-offs, and gives immediate access to collected data and references on the topic. "Elliptical Fiber Waveguides" begins with an historical overview, and then provides detailed coverage of specific waveguide and fiber modes, including all relevant specifications and data currently available. The book examines the use of elliptical fibers for a wide variety of recent applications, including sensors, rare-earth-doped fiber sources, and amplifiers. With its 278 equations, 161 figures, and nearly 200 references to the literature, "Elliptical Fiber Waveguides" brings together in one source the complete body of information currently available on this promising technology.
This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber limited bandwidth problem can be decreased by using multilevel signaling like multilevel pulse amplitude modulation or by using an equalizer for binary data transmission.
This book is designed to highlight the basic principles of fiber optic imaging and sensing devices. The book provides the readers with a solid foundation in fiber optic imaging and sensing devices. The text begins with an introductory chapter that starts from Maxwell s equations and ends with the derivation of the basic optical fiber characteristic equations and solutions (i.e. fiber modes). Also covered within are reviews of the most common fiber optic interferometric devices which are the basis for many fiber optic imaging and sensing systems. The author discusses the basics of fiber optic imagers with an emphasis on fiber optic confocal microscope. Including chapters on fiber Bragg grating based sensor and various applications and fiber Sagnac loop based sensors. The book also provides useful forms of device characteristic equations.
"It strikes an excellent balance between underlying theory and principles, rigorous derivation of design formulae and description of practical applications, ranging from device to system and network, performances and properties." -- International Journal of Optoelectronics "I would recommend it as a reference for those seeking to gain a basic understanding of fiber optic access networks and for technical managers who want an up-to-date overview of advances in this technology." -- Laser Focus World
This book examines the architectures, technologies, and design methods that make it possible to achieve a survivable fiber network, both practically and economically. Combining theory and actual results, it explores alternative methods and presents analytical and computational optimization approaches.
This book explains the advantages of fiber optics over conventional coaxial cables when routing microwave signals.
The most recent design and system applications of OF amplifiers are comprehensively described in this detailed book. With specific focus on the latest telecommunication engineering issues, it reviews all significant properties of optical fiber amplifiers and presents highly accurate models for erbium-, neodymium-, and praseodymium- doped fiver amplifiers.
This book provides the reader with a clear overview of the considerable body of research and development work carried out in the last five years on microstructured polymer optical fibres (mPOFs). It discusses new applications which will be opened up by this emerging technology and includes for the first time details about the fabrication process for these fibres. The book provides an excellent introduction to this new technology.
This is the first book dedicated to wavelength filters for fibre optics. It provides a comprehensive account of the principles and applications of such filters, including their technological realizations. It explains the relevant performance parameters, the particular advantages and shortcomings of the various concepts and components, and the preferred applications. There is also in-depth information on the characteristics of commercially available devices.
Describes virtually all aspects of ion-exchanged glass waveguides, from fabrication to techniques for characterization and analysis.
The fourth volume in a series, this work details coverage of recent developments in the field of optical fibre sensors. It describes the impact which fibre sensors are having in such areas as chemical and environmental monitoring, structural instrumentation and "smart" structure, process control and engineering, and specialist industrial measurements.
Focusing on the rapidly increasing interaction between
biotechnology and advanced fiberoptics/electronics, Biosensors with
Fiberoptics emphasizes the three major phases of the developmental
process from concept to marketplace: research, development, and
applications.
This book demonstrates how to model the entire target acquisition process using either visible or infrared imaging systems. Beginning with an overview on electro-optical system design, the text introduces the complexity of various design considerations. A discussion of the differing types of visible and infrared sensors outlines basic wavelength issues and provides definitions of baseline hardware solutions.
Optical Solitons represent one of the most exciting and fascinating concepts in modern communications, arousing special interest due to their potential applications in optical fibre communication. This volume focuses on the explicit integration of analytical and experimental methods in nonlinear fibre optics and integrated optics. It covers all important recent technical issues in optical-soliton communication. For example, individual chapters are devoted to topics such as dispersion management and fibre Bragg grating. All authors are leading authorities in their fields.
This book describes important recent developments in fiber optic sensor technology and examines established and emerging applications in a broad range of fields and markets, including power engineering, chemical engineering, bioengineering, biomedical engineering, and environmental monitoring. Particular attention is devoted to niche applications where fiber optic sensors are or soon will be able to compete with conventional approaches. Beyond novel methods for the sensing of traditional parameters such as strain, temperature, and pressure, a variety of new ideas and concepts are proposed and explored. The significance of the advent of extended infrared sensors is discussed, and individual chapters focus on sensing at THz frequencies and optical sensing based on photonic crystal structures. Another important topic is the resonances generated when using thin films in conjunction with optical fibers, and the enormous potential of sensors based on lossy mode resonances, surface plasmon resonances, and long-range surface exciton polaritons. Detailed attention is also paid to fiber Bragg grating sensors and multimode interference sensors. Each chapter is written by an acknowledged expert in the subject under discussion.
This reference presents a system analysis of the fibre-optic gyro. Drawing on 15 years of research and developments, it describes the concepts that have emerged as the preferred solutions for obtaining a practical device, and provides access to the information needed to know about optics, single-mode fibre optics and integrated optics to understand the fibre gyro.
This book brings together in a single volume the principles, practice and applications of the technology and places it in the context of other recent developments in optical fiber sensor technology. Relevant solid-state physics relating to fluorescent emission is reviewed to aid in materials selection all aspects of sensor design including detector circuit configurations are covered. Cross-referencing of systems with other temperature sensors and comparative evaluations with other sensor types are included.
This book is the companion book of reference to the first volume. The book delivers an up-to-date review of key areas in modern optics with tutorial chapters that provide information on such topics as: coherent optical fiber systems, free space optical communications, atmospheric against guided wave optical communications and techniques for signal fading and loss.
Following on from "Optical Fiber Sensors", Volumes 1 and 2, this third volume discusses the significance and applications of recent fibre optic development, including: Fiber Bragg grating and its impact on the basis of sensing technology; optical fibre amplifiers and their emergence as an important optical source when configured as a laser and as a broadband photoluminescent device; and the developments of distributed sensing.
Fundamentals of Optical Fiber Sensor Technology The field of optical fiber sensors continues to expand and develop, being increasingly influenced by new applications of the technologies that have been the topics of research for some years. In this way, the subject continues to mature and reach into new areas of engineering. This text in the series on Optical Fiber Sensor Technology provides a foundation for a better understanding of those developments in the basic science and its applications in fiber sensors, underpinning the subject today. This book builds upon the work in an earlier single volume which covered a broad area of the subject, but which now, in this, volume 1 of the series, focuses upon the fundamentals and essentials of the technology. Material which is included has been carefully reviewed and in most cases thoroughly revised and expanded to reflect the current state of the subject, and provide an essential background for the more applications-oriented content of the subsequent volumes of the series. This volume opens with a status paper on optical fiber sensor technology, by Kenneth Grattan and Tong Sun providing in it a flavor of the main topics in the field and giving an essential overview at the sort of systems which are discussed in more detail in the other chapters in the whole series. An extensive publication list of readily accessible papers reflecting these topics is included.
This is a concise introduction into optical fiber communication. It covers important aspects from the physics of optical wave propagation and amplification to the essentials of modulation formats and receivers. The combination of a solid coverage of necessary fundamental theory with an in-depth discussion of recent relevant research results enables the reader to design modern optical fiber communication systems. The book serves both graduate students and professionals. It includes many worked examples with solutions for lecturers. For the second edition, Reinhold Noe made many changes and additions throughout the text so that this concise book presents the essentials of optical fiber communication in an easy readable and understandable way.
Optical Fiber Sensor Technology, Advanced Applications - Bragg Gratings and Distributed Sensors, builds upon the foundations of the subject in the preceding four volumes of this series, concentrating as they do upon both applications and the technology of advanced optical fiber sensors. Previous volumes have covered the fundamentals of the field, devices and systems and chemical and environmental monitoring. This volume deals with a range of highly topical sensor devices and commercial systems, with considerable emphasis upon one of the most important areas, Bragg gratings in fibers, their fabrication and applications in advanced sensor systems and the principles and use of distributed fiber optic sensors. The volume is well illustrated and referenced, pointing to hundreds of key publications accessible in the open literature. It draws upon a group of authors with an international reputation for their work in the area, carefully edited into a coherent and logical text by the editors, based on their considerable experience in the field. This book series will provide an invaluable source for researchers, engineers and advanced students in the field of optical fibers, optoelectronics and measurement and sensing. |
You may like...
|