![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Fibre optics
Prepared by six leading professionals in the industry, this comprehensive reference helps you better understand the basic phenomena behind OF amplifiers -- and gives you the practical knowledge you need to design and produce OF systems. Includes 180 equations and nearly 240 illustrations.
A fibre Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fibre that reflects particular wavelengths of light and transmits all the others. As such, FBGs can be used as inline optical filters to block certain wavelengths, or as wavelength-specific reflectors. Applications include optical fibre communications, sensors and fibre lasers. This book addresses the critical challenge of developing Fibre Bragg Gratings (FBGs) for applications as sensors in harsh and space environment. Coverage ranges from the basic principles through design, fabrication, and testing to their industrial implementation. A thorough review includes the in-depth examination of the FBGs properties and the most important developments in devices and applications. A particular emphasis is given to the applications of fibre optic sensors in the space environment, which is characterized mainly by vacuum, high thermal gradients, mechanical vibrations and various types of cosmic radiation. The book concludes with a summary and overview of challenges faced by FBG technology. The book is supplemented by an extensive survey of published papers, books and conference reports. As an added benefit, the book is structured in such a way as to provide useful and in-depth training and skills development to graduate/undergraduate students, specialised engineers, and academic/industrial experts.
Plastic Optical Fiber Sensors cover the fundamentals and applications of a new class of fiber sensors. With contributions from leading academics in the area, this book covers the theory of plastic optical fiber sensors or (POFs), as well as applications in oil, gas, biotechnology, and energy fields. Using multiple examples, the editors showcase the advantageous characteristics of POFs, such as ease of handling, large diameter, inexpensive peripheral components and simple termination tools. By doing so, the editors assert that there has been a proliferation of the use of POFs in new consumer products. The book also highlights uses for building various products, such as a POF sensor for oil trucker valve monitoring, a monitoring system for high voltage substation switch, an oil leaking sensor for offshore platforms and a solar tracker for illumination. Including over 300 black and white images, this book would be highly beneficial for professionals in manufacturing as well as academics in universities, particularly those who use optical fiber sensors on a regular basis.
Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability.
Signi?cant advances in optical ?ber technology have created a need for an up-to-date book about optical ?ber fusion splicing. Over the past 15 years, a variety of new optical ?bers including rare-earth-doped ?ber, dispersi- compensating?ber,dispersion-matched?berpairs,andmicrostructured?ber have been introduced. These ?bers are currently used extensively in both research and commercial applications. Fusion splicing of these ?bers has a signi?cant impact on their performance but the relevant technical infor- tion has hitherto only been accessible by sifting through numerous technical articles published over a span of several decades. This book consolidates this scattered knowledge base into one coherent reference source. This text is intended to serve as a reference for an audience that is both diverse and rapidly growing. This audience includes academic researchers - vestigatingthelatestoptical?bertechnology,designersofcommercialoptical ?ber, ?ber splicing equipment engineers, and product development engineers designingoptical?berdevicesfromcommerciallyavailablecomponents.M- ufacturersofoptical?ber,optical?ber components,optical?ber devices,and optical ?ber splicers all require a sophisticated understanding of optical ? ber fusion splicing. Optical ?ber fusion splicing is a multi-disciplinary topic that combines concepts fromdiverse?eldsincluding opticalwaveguidetheory,heattransfer, materials science, mechanical engineering, reliability theory, ?uid mechanics, and even image processing. This book is unique in that it includes rigorous analyses from all of these very diverse ?elds. Scientists and engineers int- ested in optical ?ber splicing who have a background in one or two of these ?elds will bene?t from relevant knowledge in an unfamiliar ?eld.
Shuji Nakamura's development of a blue semiconductor laser on the basis of GaN opens the way for a host of new applications of semiconductor lasers. The wavelengths can be tuned by controlling the composition. For the first time it is possible to produce lasers with various wavelengths, ranging from red through yellow and green to blue, in one substrate material. This fact, together with their high efficiency, makes GaN-based lasers very useful for a wide spectrum of applications. The second edition of this basic book on GaN-based devices has been updated and significantly extended. It includes a survey of worldwide research on GaN, as well as Nakamura's latest important developments. The reader finds a careful introduction to the physics and properties of GaN. The main part of the book deals with the production and characteristics of GaN LDs and LEDs. To complete the spectrum of applications, GaN power devices are also described.
A text that sheds much-needed light on one of telecommunication’s brightest technologies Fiber optics has assumed a dominant place among the available technologies to slake the ever-growing worldwide thirst for bandwidth. As miles and miles of optical fiber cable is being buried underground and under the sea, the demand for those capable of designing and installing fiber-optic systems has also grown. This book gathers all the essential information needed by the network architects, engineers, and craftspeople who plan, install, and maintain fiber-optic systems. Requiring only a basic math and physics background, Fiber-Optic Systems for Telecommunications acts as both a tutorial and practical reference on both theory and practical applications. It discusses:
The text stresses design methods for achieving advanced performance on fiber-optic systems inside cost-effective limits. At the same time, a good dose of practical application is provided to the reader. For example, there is an extensive section on the application of an OTDR (optical time domain reflectometer) for performance measurement and troubleshooting of optical systems. The book examines the maximum capacity of high-quality single-mode fiber. Here, the ITU has made some major contributions in this arena in their G.650 and G.950 recommendations. The author describes the ITU "grid" or wavelength assignment chart for the 1550 nm band. How close can these light carriers be placed before serious performance degradation occurs? He describes ultimate bit rate capacity in this band alone in the hundred of terabits reaching a final bit rate capacity possibly in the low thousands of terabits per second. The author communicates the excitement of such research in his writing.
Combining the positive characteristics of microfluidics and optics, microstructured optical fibres (MOFs) have revolutionized the field of optoelectronics. Tailored guiding, diffractive structures and photonic band-gap effects are used to produce fibres with highly specialised, complex structures, facilitating the development of novel kinds of optical fibre sensors and actuators. Part One outlines the key materials and fabrication techniques used for microstructured optical fibres. Microfluidics and heat flows, MOF-based metamaterials, novel and liquid crystal infiltrated photonic crystal fibre (PCF) designs, MOFs filled with carbon nanotubes and melting of functional inorganic glasses inside PCFs are all reviewed. Part Two then goes on to investigate sensing and optofluidic applications, with the use of MOFs in structural sensing, sensing units and mechanical sensing explored in detail. PCF's for switching applications are then discussed before the book concludes by reviewing MOFs for specific nucleic acid detection and resonant bio- and chemical sensing.
This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful property of being able to heal after perturbation. The book will take you from the physical basics of ray and beam optics, explain fiber structure and the functions of optical elements, and bring you to the forefront of both applications and research. The state of the art of high speed data transmission is described, and the use of fiber optic sensors in metrology is treated. The book is written in a pedagogical style so that students of both physics and electrical engineering, as well as technicians and engineers involved in optical technologies, will benefit. The new edition is largely updated and has new sections on nonlinear phenomena in fibers as well as on the latest trends in applications.
Recent earthquakes and space program-related news serve as potent reminders of the uses fiber optic technology offers to an increasingly complex world. Like living organisms sensitive to subtle changes in the environment, buildings, structures, and space vehicles can be equipped to sense and react to their surroundings by means of hair-thin glass fiber sensors embedded in structural materials and capable of carrying information and measuring changes in stress and other environmental factors. Data is collected and transmitted to a central location, where the findings are assessed and damage corrected. Fiber Optic Smart Structures pools the expertise of thirty-three leading professionals, many of whom are pioneers in the field, and offers a comprehensive introduction to this fast growing technology. Beginning with a historical overview and a look at the background technology, the book goes on to discuss methods of embedding optical fibers in modern high-strength, lightweight composite materials; ingress and egress of optical fibers; and more specialized application concerns, including use of the Fabry-Perot interferometer and Bragg grating sensors. Lower cost options are considered in light of performance trade-offs, and broad area coverage through single-line stringing of multiple fiber sensors is compared with single and distributed sensor approaches. The last section of the book treats the use of fiber optic smart structures in a wide range of settings. Discussions include applications in environments where high temperature and ultrasonic waves play a role; in the aerospace industry, where changes in the structural integrity of the system demand real-time automatic changes; and a rapidly emerging new direction, earthquake-resistant buildings and, along similar lines, bridges that perform self-diagnostics. The first and only comprehensive professional reference in this important, emerging field, Fiber Optic Smart Structures is a major addition to the libraries of aerospace engineers, mechanical scientists, fiber optics researchers and engineers, architects, and structural engineers. It is also a first-rate graduate-level textbook. The first and only comprehensive reference on this important and emerging field... Fiber Optic Smart Structures is the ultimate resource for engineers, architects, researchers, and anyone with an interest in this promising new technology. Thirty-three of the world's leading professionals—many of them pioneers in the field—bring you comprehensive coverage of every important aspect of fiber optic smart structure technology, including its history and evolution, background technologies, structural and assembly issues, sensing devices, and numerous applications. Topics of particular interest include:
This book provides a step-by-step discussion through each topic of fiber optics. Each chapter explores theoretical concepts of principles and then applies them by using experimental cases with numerous illustrations. The book works systematically through fiber optic cables, advanced fiber optic cables, light attenuation in optical components, fiber optic cable types and installations, fiber optic connectors, passive fiber optic devices, wavelength division multiplexing, optical amplifiers, optical receivers, opto-mechanical switches, and optical fiber communications. It includes important chapters in fiber optic lighting, fiber optics testing, and laboratory safety.
The need for both intrinsic and extrinsic fiber optic sensor technologies continues to grow. To meet the demands of this fast expanding applications-driven market, Fiber Optic Sensors, Second Edition presents both the latest advances in fiber optic sensor technology, such as the application of photonic crystal fibers to fiber optic gyroscopes, and recent application opportunities, including the use of fiber optic sensors as a minimally invasive medical treatment. The new edition of this seminal work highlights the development of fiber optic sensors, while providing an overview of current methods for the construction of high-speed and high-capacity fiber optic systems. Two new chapters cover topics such as femtosecond laser illumination inscription and the growing application sector of fiber optic chemical and biological sensors. Adding significant new material, the book continues to provide a progressive history of each sensor type as well as basic principles and fundamental building blocks for practical applications in the electrical aerospace, defense and manufacturing, smart structure, undersea surveillance, medical, and gas and oil industries.
This book reflects the substantial progress made in the area of optical fibers and provides for the first time a systematic description of linear and non-linear fiber devices, including fiber couplers, splices, connectors, multiplexers, switches, and modulators. Primarily aimed at advanced undergraduate and graduate students in optics, optoelectronics, applied physics, and electrical and electronic engineering, this book serves as a valuable reference for scientists and engineers working in optoelectronics and related fields in industry and academic. Topics include coupling, devices based on coupling effect with non-polarized light, devices using polarized light, devices based on nonlinearities, and devices based on rare earth doped fibers.
The book provides an introduction of surface plasmons and presents its applications in the sensing of various chemical and biological analyses using optical fiber technology. The field is developed by introducing the surface plasmons for semi-infinite metal-dielectric interface with discussion of their propagation length and penetration depth. Practical issues with the excitation of surface plasmons in different configurations and in various geometries including various means of their excitation have also been included. The book discusses the essential components of fiber optic sensors, their functions and the performance parameters along with the theoretical description of fiber optic Surface Plasmon Resonance (SPR) sensors with respect to various light launching conditions. The fabrication methods and protocols used for the fabrication of the fiber optic SPR chemical and biosensors have been described. Some fiber optic sensing applications based on SPR phenomena and various issues, such as sensitivity enhancement, influence of external stimuli etc, have been an important part of the book.The book will help beginners as well as established researchers in understanding the fundamentals and advancements of optical fiber plasmonic sensor technology. The book contains both the rigorous theory and the experimental techniques of SPR and related variety of sensors.
Discusses the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section Presents a single approach based on the M. Berry formula Describes the topological competition between different optical vortices in a superposition Demonstrates the stability of the topological charge to random phase distortions and insensitivity to amplitude distortions Contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space and the topological charge is preserved
This study is designed for graduate technicians working in laboratories or quality test offices, as well as academics and industrial researchers in optical communications and optical sensors and students attending postgraudate courses on optical engineering. It aims to provide a survey of the methods for fiber optics experimental characterization and includes details of each technique, including basic concepts, critical aspects of their practical implementation, and estimates on the accuracy and repeatability of the results obtained from the measurements. The discussion also covers commercially available field testing equipment.
This book covers the recent progress in fiber-optic communication systems with a main focus on the impact of fiber nonlinearities on the system performance. Over the past few years, there has been significant progress in coherent communication systems mainly because of the advances in digital signal processing techniques. This has led to renewed interest in fiber linear and nonlinear impairments and techniques to mitigate them in electrical domain. In this book, the reader will find all the important topics of fiber optic communication systems in one place with in-depth coverage by the experts of each subtopics. Pioneers from each of the sub-topics have been invited to contribute. Each chapter will have a section on fundamentals, review of literature survey and the recent developments. The reader will benefit from this approach since many of the conference proceedings and journal articles mainly focus on the authors research work without spending space on preliminaries.
Since publication of the 1st edition in 2002, there has been a deep evolution of the global communication network with the entry of submarine cables in the Terabit era. Thanks to optical technologies, the transmission on a single fiber can achieve 1 billion simultaneous phone calls across the ocean! Modern submarine optical cables are fueling the global internet backbone, surpassing by far all alternative techniques. This new edition of Undersea Fiber Communication Systems provides a detailed explanation of all technical aspects of undersea communications systems, with an emphasis on the most recent breakthroughs of optical submarine cable technologies. This fully updated new edition is the best resource for demystifying enabling optical technologies, equipment, operations, up to marine installations, and is an essential reference for those in contact with this field. Each chapter of the book is written by key experts of their domain. The book assembles in a complementary way the contributions of authors from key suppliers acting in the domain, such as Alcatel-Lucent, Ciena, NEC, TE-Subcom, Xtera, from consultant and operators such as Axiom, OSI, Orange, and from University and organization references such as TelecomParisTech, and Suboptic. This has ensured that the overall topics of submarine telecommunications is treated in a quite ecumenical, complete and un-biased approach.
Optical Fiber Sensors: Advanced Techniques and Applications describes the physical principles of, and latest developments in, optical fiber sensors. Providing a fundamental understanding of the design, operation, and practical applications of fiber optic sensing systems, this book: Discusses new and emerging areas of research including photonic crystal fiber sensors, micro- and nanofiber sensing, liquid crystal photonics, acousto-optic effects in fiber, and fiber laser-based sensing Covers well-established areas such as surface plasmon resonance sensors, interferometric fiber sensors, polymer fiber sensors, Bragg gratings in polymer and silica fibers, and distributed fiber sensors Explores humidity sensing applications, smart structure applications, and medical applications, supplying detailed examples of the various fiber optic sensing technologies in use Optical Fiber Sensors: Advanced Techniques and Applications draws upon the extensive academic and industrial experience of its contributing authors to deliver a comprehensive introduction to optical fiber sensors with a strong practical focus suitable for undergraduate and graduate students as well as scientists and engineers working in the field.
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition
includes major new content: slow light effects, which offers a
reduction in noise and power consumption and more ordered network
traffic-stimulated Brillouin scattering; vectorial treatment of
highly nonlinear fibers; and a brand new chapter on supercontinuum
generation in optical fibers.
|
![]() ![]() You may like...
Specialty Optical Fibers Handbook
Alexis Mendez, T. F. Morse
Hardcover
Opto-mechanical Fiber Optic Sensors…
Hamid Alemohammad
Paperback
Optical Fiber Sensing and Structural…
Yanliang Du, Baochen Sun, …
Hardcover
R2,925
Discovery Miles 29 250
|