![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Fractals
Since Benoit Mandelbrot's pioneering work in the late 1970s, scores of research articles and books have been published on the topic of fractals. Despite the volume of literature in the field, the general level of theoretical understanding has remained low; most work is aimed either at too mainstream an audience to achieve any depth or at too specialized a community to achieve widespread use. Written by celebrated mathematician and educator A.A. Kirillov, A Tale of Two Fractals is intended to help bridge this gap, providing an original treatment of fractals that is at once accessible to beginners and sufficiently rigorous for serious mathematicians. The work is designed to give young, non-specialist mathematicians a solid foundation in the theory of fractals, and, in the process, to equip them with exposure to a variety of geometric, analytical, and algebraic tools with applications across other areas.
The investigation of phenomena involving fractals has gone through a spectacular development in the last decade. Many physical, technological and biological processes have been shown to be related to and described by objects with non-integer dimensions. The physics of far-from-equilibrium growth phenomena represents one of the most important fields in which fractal geometry is widely applied. During the last couple of years considerable experimental, numerical and theoretical information has accumulated concerning such processes.This book, written by a well-known expert in the field, summarizes the basic concepts born in the studies of fractal growth and also presents some of the most important new results for more specialized readers. It also contains 15 beautiful color plates demonstrating the richness of the geometry of fractal patterns. Accordingly, it may serve as a textbook on the geometrical aspects of fractal growth and it treats this area in sufficient depth to make it useful as a reference book. No specific mathematical knowledge is required for reading this book which is intended to give a balanced account of the field.
Benoit Mandelbrot¿s pioneering research in fractal geometry has affected many areas of mathematics, physics, finance and other disciplines. The papers reprinted in this third volume of his Selected Works center on a detailed study of fractional Brownian functions, best known as the mathematical tools behind the celebrated fractal landscapes. Extensive introductory material preceding the reprints incorporates striking new observations and conjectures. This book explores the fractal themes of ¿self-affinity¿ and ¿globality.¿ The ubiquity of ¿wild¿ temporal and spatial variability led Mandelbrot, in the early 1960¿s, to conclude that those phenomena lie beyond the usual statistical techniques and represent a new state of indeterminism. New mathematical tools are needed, and this book contributes to their development.
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo- metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di- mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref- erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap- pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex- tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.
na broad sense Design Science is the grammar of a language of images Irather than of words. Modern communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. International traffic signs use international image symbols which are not specific to any particular verbal language. An image language differs from a verbal one in that the latter uses a linear string of symbols, whereas the former is multi dimensional. Architectural renderings commonly show projections onto three mutual ly perpendicular planes, or consist of cross sections at different altitudes capa ble of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings comprising ramps and other features which disguise the separation between floors, and consequently limit the cre ative process of the architect. Analogously, we tend to analyze natural struc tures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures. Perception is a complex process. Our senses record; they are analogous to audio or video devices. We cannot, however, claim that such devices perceive."
Written for mathematicians, engineers, and researchers in experimental science, as well as anyone interested in fractals, this book explains the geometrical and analytical properties of trajectories, aggregate contours, geographical coastlines, profiles of rough surfaces, and other curves of finite and fractal length. The approach is by way of precise definitions from which properties are deduced and applications and computational methods are derived. Written without the traditional heavy symbolism of mathematics texts, this book requires two years of calculus while also containing material appropriate for graduate coursework in curve analysis and/or fractal dimension.
Fractal Functions, Fractal Surfaces, and Wavelets is the first systematic exposition of the theory of fractal surfaces, a natural outgrowth of fractal sets and fractal functions. It is also the first treatment to bring these general considerations to bear on the burgeoning field of wavelets. The text is based on Massopusts work on and contributions to the theory of fractal functions, and the author uses a number of tools--including analysis, topology, algebra, and probability theory--to introduce readers to this new subject. Though much of the material presented in this book is relatively current (developed in the past decade by the author and his colleagues) and fairly specialized, an informative background is provided for those * First systematic treatment of fractal surfaces
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.
This is the first book in the Selecta, the collected works of Benoit Mandelbrot. This volume incorporates his original contributions to finance. The chapters consist of much new material prepared for this volume, as well as reprints of his classic papers which are devoted to the roles that discontinuity and related forms of concentration play in finance and economics. Much of this work helps to lay a foundation for evaluating risks in trading strategies.
This book gives a unified treatment of a variety of mathematical systems generating densities, ranging from one-dimensional discrete time transformations through continuous time systems described by integro-partial-differential equations. Examples have been drawn from a variety of the sciences to illustrate the utility of the techniques presented. This material was organized and written to be accessible to scientists with knowledge of advanced calculus and differential equations. In various concepts from measure theory, ergodic theory, the geometry of manifolds, partial differential equations, probability theory and Markov processes, and chastic integrals and differential equations are introduced. The past few years have witnessed an explosive growth in interest in physical, biological, and economic systems that could be profitably studied using densities. Due to the general inaccessibility of the mathematical literature to the non-mathematician, there has been little diffusion of the concepts and techniques from ergodic theory into the study of these "chaotic" systems. This book intends to bridge that gap.
This text examines the emerging field of fractals and its applications in earth sciences. Topics covered include: concepts of fractal and multifractal chaos; the application of fractals in geophysics, geology, climate studies, and earthquake seismology.
Important developments in the progress of the theory of rock mechanics during recent years are based on fractals and damage mechanics. The concept of fractals has proved to be a useful way of describing the statistics of naturally occurring geometrics. Natural objects, from mountains and coastlines to clouds and forests, are found to have boundaries best described as fractals. Fluid flow through jointed rock masses and clusterings of earthquakes are found to follow fractal patterns in time and space. Fracturing in rocks at all scales, from the microscale (microcracks) to the continental scale (megafaults), can lead to fractal structures. The process of diagenesis and pore geometry of sedimentary rock can be quantitatively described by fractals, etc. The book is mainly concerned with these developments, as related to fractal descriptions of fragmentations, damage and fracture of rocks, rock burst, joint roughness, rock porosity and permeability, rock grain growth, rock and soil particles, shear slips, fluid flow through jointed rocks, faults, earthquake clustering, and so on. The prime concerns of the book are to give a simple account of the basic concepts, methods of fractal geometry, and their applications to rock mechanics, geology, and seismology, and also to discuss damage mechanics of rocks and its application to mining engineering. The book can be used as a textbook for graduate students, by university teachers to prepare courses and seminars, and by active scientists who want to become familiar with a fascinating new field.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors."
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
This book provides a collection of 44 simple computer and physical laboratory experiments, including some for an artist's studio and some for a kitchen, that illustrate the concepts of fractal geometry. In addition to standard topics - iterated function systems (IFS), fractal dimension computation, the Mandelbrot set - we explore data analysis by driven IFS, construction of four-dimensional fractals, basic multifractals, synchronization of chaotic processes, fractal finger paints, cooking fractals, videofeedback, and fractal networks of resistors and oscillators.
An integrated approach to fractals and point processes This publication provides a complete and integrated presentation of the fields of fractals and point processes, from definitions and measures to analysis and estimation. The authors skillfully demonstrate how fractal-based point processes, established as the intersection of these two fields, are tremendously useful for representing and describing a wide variety of diverse phenomena in the physical and biological sciences. Topics range from information-packet arrivals on a computer network to action-potential occurrences in a neural preparation. The authors begin with concrete and key examples of fractals and point processes, followed by an introduction to fractals and chaos. Point processes are defined, and a collection of characterizing measures are presented. With the concepts of fractals and point processes thoroughly explored, the authors move on to integrate the two fields of study. Mathematical formulations for several important fractal-based point-process families are provided, as well as an explanation of how various operations modify such processes. The authors also examine analysis and estimation techniques suitable for these processes. Finally, computer network traffic, an important application used to illustrate the various approaches and models set forth in earlier chapters, is discussed. Throughout the presentation, readers are exposed to a number of important applications that are examined with the aid of a set of point processes drawn from biological signals and computer network traffic. Problems are provided at the end of each chapter allowing readers to put their newfound knowledge into practice, andall solutions are provided in an appendix. An accompanying Web site features links to supplementary materials and tools to assist with data analysis and simulation. With its focus on applications and numerous solved problem sets, this is an excellent graduate-level text for courses in such diverse fields as statistics, physics, engineering, computer science, psychology, and neuroscience.
This volume contains the Proceedings of the Special Seminar on: FRAGTALS held from October 9-15, 1988 at the Ettore Majorana Centre for Scientific Culture, Erice (Trapani), Italy. The concepts of self-similarity and scale invariance have arisen independently in several areas. One is the study of critical properites of phase transitions; another is fractal geometry, which involves the concept of (non-integer) fractal dimension. These two areas have now come together, and their methods have extended to various fields of physics. The purpose of this Seminar was to provide an overview of the recent developments in the field. Most of the contributions are theoretical, but some experimental work is also included. Du: cing the past few years two tendencies have emerged in this field: one is to realize that many phenomena can be naturally modelled by fractal structures. So one can use this concept to define simple modele and study their physical properties. The second point of view is more microscopic and tries to answer the question: why nature gives rise to fractal structures. This implies the formulation of fractal growth modele based on physical concepts and their theoretical understanding in the same sense as the Renormalization Group method has allowed to understand the critical properties of phase transitions
Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.
Providing the mathematical background required for the study of fractal topics, this book deals with integration in the modern sense, together with mathematical probability. The emphasis is on the particular results that aid the discussion of fractals, and follows Edgars Measure, Topology, and Fractal Geometry. With exercises throughout, this is and ideal text for beginning graduate students both in the classroom and for self-study.
A practical guide to solving problems in chemistry with fractal
geometry.
This book presents concisely the full story on complex and hypercomplex fractals, starting from the very first steps in complex dynamics and resulting complex fractal sets, through the generalizations of Julia and Mandelbrot sets on a complex plane and the Holy Grail of the fractal geometry - a 3D Mandelbrot set, and ending with hypercomplex, multicomplex and multihypercomplex fractal sets which are still under consideration of scientists. I tried to write this book in a possibly simple way in order to make it understandable to most people whose math knowledge covers the fundamentals of complex numbers only. Moreover, the book is full of illustrations of generated fractals and stories concerned with great mathematicians, number spaces and related fractals. In the most cases only information required for proper understanding of a nature of a given vector space or a construction of a given fractal set is provided, nevertheless a more advanced reader may treat this book as a fundamental compendium on hypercomplex fractals with references to purely scientific issues like dynamics and stability of hypercomplex systems. |
![]() ![]() You may like...
|