![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Fuzzy set theory
"Fuzzy Engineering and Operations Research" is the edited outcome of the 5th International Conference on Fuzzy Information and Engineering (ICFIE2011) held during Oct. 15-17, 2011 in Chengdu, China and by the 1st academic conference in establishment of Guangdong Province Operations Research Society (GDORSC) held on Oct. 20, 2011 in Guangzhou, China. The 5th ICFIE2011, built on the success of previous conferences, and the GDORC, first held, are major Symposiums, respectively, for scientists, engineers practitioners and Operation Research (OR) researchers presenting their updated results, developments and applications in all areas of fuzzy information and engineering and OR. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists in Fuzziology and OR fields. The book contains 62 papers and is divided into five main parts: "Fuzzy Optimization, Logic and Information," "The mathematical Theory of Fuzzy Systems," "Fuzzy Engineering Applications and Soft Computing Methods," "OR and Fuzziology" and "Guess and Review.""
How has computer science changed mathematical thinking? In this first ever comprehensive survey of the subject for popular science readers, Arturo Sangalli explains how computers have brought a new practicality to mathematics and mathematical applications. By using fuzzy logic and related concepts, programmers have been able to sidestep the traditional and often cumbersome search for perfect mathematical solutions to embrace instead solutions that are "good enough." If mathematicians want their work to be relevant to the problems of the modern world, Sangalli shows, they must increasingly recognize "the importance of being fuzzy." As Sangalli explains, fuzzy logic is a technique that allows computers to work with imprecise terms--to answer questions with "maybe" rather than just "yes" and "no." The practical implications of this flexible type of mathematical thinking are remarkable. Japanese programmers have used fuzzy logic to develop the city of Sendai's unusually energy-efficient and smooth-running subway system--one that does not even require drivers. Similar techniques have been used in fields as diverse as medical diagnosis, image understanding by robots, the engineering of automatic transmissions, and the forecasting of currency exchange rates. Sangalli also explores in his characteristically clear and engaging manner the limits of classical computing, reviewing many of the central ideas of Turing and Godel. He shows us how "genetic algorithms" can solve problems by an evolutionary process in which chance plays a fundamental role. He introduces us to "neural networks," which recognize ill-defined patterns without an explicit set of rules--much as a dog can be trained to scent drugs without ever having an exact definition of "drug." Sangalli argues that even though "fuzziness" and related concepts are often compared to human thinking, they can be understood only through mathematics--but the math he uses in the book is straightforward and easy to grasp. Of equal appeal to specialists and the general reader, "The Importance of Being Fuzzy" reveals how computer science is changing both the nature of mathematical practice and the shape of the world around us.
In recent years, substantial efforts are being made in the development of reliability theory including fuzzy reliability theories and their applications to various real-life problems. Fuzzy set theory is widely used in decision making and multi criteria such as management and engineering, as well as other important domains in order to evaluate the uncertainty of real-life systems. Fuzzy reliability has proven to have effective tools and techniques based on real set theory for proposed models within various engineering fields, and current research focuses on these applications. Advancements in Fuzzy Reliability Theory introduces the concept of reliability fuzzy set theory including various methods, techniques, and algorithms. The chapters present the latest findings and research in fuzzy reliability theory applications in engineering areas. While examining the implementation of fuzzy reliability theory among various industries such as mining, construction, automobile, engineering, and more, this book is ideal for engineers, practitioners, researchers, academicians, and students interested in fuzzy reliability theory applications in engineering areas.
It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.
In this innovative approach to the practice of social science,
Charles Ragin explores the use of fuzzy sets to bridge the divide
between quantitative and qualitative methods. Paradoxically, the
fuzzy set is a powerful tool because it replaces an unwieldy,
"fuzzy" instrument--the variable, which establishes only the
positions of cases relative to each other, with a precise
one--degree of membership in a well-defined set.
Fuzzy set theory deals with sets or categories whose boundaries are blurry or, in other words, "fuzzy." This book presents an accessible introduction to fuzzy set theory, focusing on its applicability to the social sciences. Unlike most books on this topic, Fuzzy Set Theory: Applications in the Social Sciences provides a systematic, yet practical guide for researchers wishing to combine fuzzy set theory with standard statistical techniques and model-testing. Key Features: Addresses Basic Concepts: Fuzzy set theory is an analytic framework for handling concepts that are simultaneously categorical and dimensional. Starting with a rationale for fuzzy sets, this book introduces readers with an elementary knowledge of statistics to the necessary concepts and techniques of fuzzy set theory and fuzzy logic. Introduces Novel Ways of Analyses: Researchers are shown alternative methods to conventional models, especially for testing theories that are expressed in set-wise terms. Issues of operationalizing graded membership in a fuzzy set and the measurement of the properties of such sets are a few of the topics addressed. Illustrates Techniques and Applications: Real examples and data-sets from various disciplines in the social sciences are used to demonstrate the connections between fuzzy sets and other data analytic techniques, empirical applications of the technique, and the critiques of fuzzy set theory. Intended Audience: Ideal for researchers in the social sciences, education, and behavioral sciences; as well as graduate students in the applied social sciences
Information granules, as encountered in natural language, are implicit in nature. To make them fully operational so they can be effectively used to analyze and design intelligent systems, information granules need to be made explicit. An emerging discipline, granular computing focuses on formalizing information granules and unifying them to create a coherent methodological and developmental environment for intelligent system design and analysis. Granular Computing: Analysis and Design of Intelligent Systems presents the unified principles of granular computing along with its comprehensive algorithmic framework and design practices. Introduces the concepts of information granules, information granularity, and granular computing Presents the key formalisms of information granules Builds on the concepts of information granules with discussion of higher-order and higher-type information granules Discusses the operational concept of information granulation and degranulation by highlighting the essence of this tandem and its quantification in terms of the associated reconstruction error Examines the principle of justifiable granularity Stresses the need to look at information granularity as an important design asset that helps construct more realistic models of real-world systems or facilitate collaborative pursuits of system modeling Highlights the concepts, architectures, and design algorithms of granular models Explores application domains where granular computing and granular models play a visible role, including pattern recognition, time series, and decision making Written by an internationally renowned authority in the field, this innovative book introduces readers to granular computing as a new paradigm for the analysis and synthesis of intelligent systems. It is a valuable resource for those engaged in research and practical developments in computer, electrical, industrial, manufacturing, and biomedical engineering. Building from fundamentals, the book is also suitable for readers from nontechnical disciplines where information granules assume a visible position.
The formal description of non-precise data before their statistical analysis is, except for error models and interval arithmetic, a relatively young topic. Fuzziness is described in the theory of fuzzy sets but only a few papers on statistical inference for non-precise data exist. In many cases, for example when very small concentrations are being measured, it is necessary to describe the imprecision of data. Otherwise, the results of statistical analysis can be unrealistic and misleading. Fortunately, there is a straightforward technique for dealing with non-precise data. The technique - the generalized inference method - is explained in Statistical Methods for Non-Precise Data. Anyone who understands elementary statistical methods and simple stochastic models will be able to use this book to understand and work with non-precise data.
Ever since fuzzy logic was introduced by Lotfi Zadeh in the mid-sixties and genetic algorithms by John Holland in the early seventies, these two fields widely been subjects of academic research the world over. During the last few years, they have been experiencing extremely rapid growth in the industrial world, where they have been shown to be very effective in solving real-world problems. These two substantial fields, together with neurocomputing techniques, are recognized as major parts of soft computing: a set of computing technologies already riding the waves of the next century to produce the human-centered intelligent systems of tomorrow; the collection of papers presented in this book shows the way. The book also contains an extensive bibliography on fuzzy logic and genetic algorithms. |
You may like...
Windows Internals, Part 2
Andrea Allievi, Alex Ionescu, …
Paperback
Exam Ref 70-532 Developing Microsoft…
Zoiner Tejada, Michele Bustamante, …
Paperback
PowerShell, IT Pro Solutions…
William R. Stanek, William Stanek
Hardcover
R1,434
Discovery Miles 14 340
|