|
Books > Science & Mathematics > Science: general issues > General
Aerosol science and engineering is a vibrant field of particle
technology and chemical reaction engineering. The book presents a
timely account of this interdisciplinary topic and its various
application areas. It will be of interest to scientists or
engineers active in aerosol physics, aerosol or colloid chemistry,
atmospheric processes, and chemical, mechanical, environmental
and/or materials engineering.
 |
The Multiverse
(Hardcover)
Mariusz P Dąbrowski; Ana Ana Alonso-Serrano; Edited by Thomas Thomas Naumann
|
R1,333
Discovery Miles 13 330
|
Ships in 12 - 17 working days
|
|
This book contains an extensive illustration of use of finite
difference method in solving the boundary value problem
numerically. A wide class of differential equations has been
numerically solved in this book. Starting with differential
equations of elementary functions like hyperbolic, sine and cosine,
we have solved those of special functions like Hermite, Laguerre
and Legendre. Those of Airy function, of stationary localised
wavepacket, of the quantum mechanical problem of a particle in a 1D
box, and the polar equation of motion under gravitational
interaction have also been solved. Mathematica 6.0 has been used to
solve the system of linear equations that we encountered and to
plot the numerical data. Comparison with known analytic solutions
showed nearly perfect agreement in every case. On reading this
book, readers will become adept in using the method.
This book is a concise introduction to the interactions between
earthquakes and human-built structures (buildings, dams, bridges,
power plants, pipelines and more). It focuses on the ways in which
these interactions illustrate the application of basic physics
principles and concepts, including inertia, force, shear, energy,
acceleration, elasticity, friction and stability. It illustrates
how conceptual and quantitative physics emerges in the day-to-day
work of engineers, drawing from examples from regions and events
which have experienced very violent earthquakes with massive loss
of life and property. The authors of this book, a physics educator,
a math educator, and a geotechnical engineer have set off on what
might be considered a mining expedition; searching for ways in
which introductory physics topics and methods can be better
connected with careers of interest to non-physics majors. They
selected ""destructive earthquakes"" as a place to begin because
they are interesting and because future engineers represent a
significant portion of the non-physics majors in introductory
physics courses. Avoiding the extremes of treating applied physics
either as a purely hands-on, conceptual experience or as a lengthy
capstone project for learners who have become masters; the
application in this book can be scattered throughout a broader
physics course or individual learning experience.
|
You may like...
Living!
Elizabeth Austen
Paperback
R246
R229
Discovery Miles 2 290
|