![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
For many years, scientists have attempted to unite the four fundamental forces-the strong and weak nuclear forces, gravity, and electromagnetism. Many have tried uniting known theories, such as general relativity, with quantum mechanics, string theory, and even the standard model. These theories differ, and it seems difficult to find a link to connect them. In The Theory of Everything, Solved author and researcher Lawrence J. Wippler explains a new theory and provides an alternate understanding of the workings of the atom. He found that the four fundamental forces of nature can be united by just three particles-the north and south magnetic monopoles and a particle of matter that represents an element. He describes how these particles interact with each other and how they are able to create all forms of energy, including magnetism and gravity. Setting aside the presently known theories and laws of physics and attacking the problem from a different perspective, Wippler kept his assumptions simple when developing the three-particle theory. In The Theory of Everything, Solved Wippler shows that the north and south monopoles and a particle of matter are the building blocks of the universe.
An invaluable supplement to standard textbooks on quantum mechanics, this unique introduction to the general theoretical framework of contemporary physics focuses on conceptual, epistemological, and ontological issues. The theory is developed by pursuing the question: what does it take to have material objects that neither collapse nor explode as soon as they are formed? The stability of matter thus emerges as the chief reason why the laws of physics have the particular form that they do.The first of the book's three parts familiarizes the reader with the basics through a brief historical survey and by following Feynman's route to the Schroedinger equation. The necessary mathematics, including the special theory of relativity, is introduced along the way, to the point that all relevant theoretical concepts can be adequately grasped. Part II takes a closer look. As the theory takes shape, it is applied to various experimental arrangements. Several of these are central to the discussion in the final part, which aims at making epistemological and ontological sense of the theory. Pivotal to this task is an understanding of the special status that quantum mechanics attributes to measurements - without dragging in "the consciousness of the observer." Key to this understanding is a rigorous definition of "macroscopic" which, while rarely even attempted, is provided in this book.
Dispersion forces acting on both atoms and bodies play a key role in modern nanotechnology. As demonstrated in this book, macroscopic quantum electrodynamics provides a powerful method for understanding and quantifying dispersion forces in a vast range of realistic scenarios. The basic physical concepts and theoretical steps allowfor thederivation ofoutlined general expressions for dispersion forces. As illustrated by a number of examples, these expressions can easily be used to study forces between objects of various shapes and materials, including effects like material absorption, nontrivial magnetic properties and dynamical forces asssociated with excited systems.
At a level accessible to advanced undergraduates, this textbook explains the fundamental role of quantum mechanics in determining the structure, dynamics, and other properties of molecules. Readers will come to understand the quantum-mechanical basis for harmonic oscillators, angular momenta and scattering processes. Exercises are provided to help readers deepen their grasp of the essential phenomena.
Since the discovery that atomic-size particles can be described as waves, many interference experiments have been realized with electrons to demonstrate their wave behavior. In this book, after describing the different steps that led to the present knowledge, we focus on the strong link existing between photon and electron interferences, highlighting the similarities and the differences. For example, the atomic centers of a hydrogen molecule are used to mimic the slits in the Young's famous interference experiment with light. We show, however, that the basic time-dependent ionization theories that describe these Young-type electron interferences are not able to reproduce the experiment. This crucial point remains a real challenge for theoreticians in atomic collision physics.
Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differential equations such as Time-Dependent Schroedinger Equations (TDSE) andTime-Dependent Dirac equations (TDDEs for relativistic phenomena). These equations are also coupled to the photons in Maxwell's equations for collective propagation effects. Inversion of the experimental imaging data of quantum dynamics presents new mathematical challenges in the imaging of quantum wave coherences on subatomic (subnanometer) spatial dimensions and multiple timescales from atto to femto and even nanoseconds.In "Quantum Dynamic Imaging: Theoretical and Numerical Methods," leading researchers discuss these exciting state-of-the-art developments and theirimplications for R&D in view of the promise of quantum dynamic imagingscience as the essential tool for controlling matter at the molecular level."
With this thesis the author contributes to the development of a non-mainstream but long-standing approach to electroweak symmetry breaking based on an analogy with superconductivity. Electroweak symmetry breaking is assumed to be caused by dynamically generated masses of typical fermions, i.e., of quarks and leptons, which in turn assumes a new dynamics between quarks and leptons. Primarily it is designed to generate fermion masses and electroweak symmetry breaking is an automatic consequence. After the summary of the topic, the first main part of the thesis addresses the question as to whether the masses of known quarks and leptons provide sufficiently strong sources of electroweak symmetry breaking. It is demonstrated that neutrino masses subject tothe seesaw mechanism are indispensable ingredients. The other two parts of the thesis are dedicated to the presentation of two particular models: The first model is based on the new strong Yukawa dynamics and serves as a platform for studying the ability to reproduce fermion masses. The second, more realistic model introduces a flavor gauge dynamics and its phenomenological consequences are studied. Even though, in the past, this type of models has already been of some interest, following the discovery of the Standard-Model-like Higgs particle, it is regaining its relevance."
This book provides the mathematical foundations of the theory of hyperhamiltonian dynamics, together with a discussion of physical applications. In addition, some open problems are discussed. Hyperhamiltonian mechanics represents a generalization of Hamiltonian mechanics, in which the role of the symplectic structure is taken by a hyperkahler one (thus there are three Kahler/symplectic forms satisfying quaternionic relations). This has proved to be of use in the description of physical systems with spin, including those which do not admit a Hamiltonian formulation. The book is the first monograph on the subject, which has previously been treated only in research papers.
With Foreword by S L GlashowWerner Heisenberg and Richard Feynman find quantum physics fascinating and necessary for understanding the atoms. Albert Einstein dislikes it and Isaac Newton does not understand it, which is not surprising. This is the scenario for animated discussions between five people. Harald Fritzsch brings together Newton and the three great physicists of the 20th century in an imaginary meeting. His "alter ego" Adrian Haller moderates the discussions.By means of questions and answers the whole cosmos of quantum physics is described in a simple way, easily understandable non-physicists. The beginnings of quantum theory and atomic physics as well as the importance of quantum physics for our daily life - these and many more topics are the subjects of the interesting and fascinating discussions.
Quantum physics, in contrast to classical physics, allows non-locality and indeterminism in nature. Moreover, the role of the observer seems indispensable in quantum physics. In fact, quantum physics, unlike classical physics, suggests a metaphysics that is not physicalism (which is today's official metaphysical doctrine). As is well known, physicalism implies a reductive position in the philosophy of mind, specifically in its two core areas, the philosophy of consciousness and the philosophy of action. Quantum physics, in contrast, is compatible with psychological non-reductionism, and actually seems to support it. The essays in this book explore, from various points of view, the possibilities of basing a non-reductive philosophy of mind on quantum physics. In doing so, they not only engage with the ontological and epistemological aspects of the question but also with the neurophysiological ones.
This book introduces a variety of statistical tools for characterising and designing the dynamical features of complex quantum systems. These tools are applied in the contexts of energy transfer in photosynthesis, and boson sampling. In dynamical quantum systems, complexity typically manifests itself via the interference of a rapidly growing number of paths that connect the initial and final states. The book presents the language of graphs and networks, providing a useful framework to discuss such scenarios and explore the rich phenomenology of transport phenomena. As the complexity increases, deterministic approaches rapidly become intractable, which leaves statistics as a viable alternative.
The Conference on Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity was held in honour of Professor Murray Gell-Mann's 80th birthday in Singapore on 24-26 February 2010. The conference paid tribute to Professor Gell-Mann's great achievements in the elementary particle physics.This notable birthday volume contains the presentations made at the conference by many eminent scientists, including Nobel laureates C N Yang, G 't Hooft and K Wilson. Other invited speakers include G Zweig, N Samios, M Karliner, G Karl, M Shifman, J Ellis, S Adler and A Zichichi.About Murray Gell-MannMurray Gell-Mann, born September 15, 1929, won the 1969 Nobel Prize in physics for his work on the theory of elementary particles.His contributions span the entire history of particle physics, from the early days of the particle zoo to the modern day QCD. Along the way, even as he proposed new quantum numbers to bring order into the zoo, he had fun in naming them. And thus was born Strangeness, Flavor, Hadrons, Baryons, Leptons, the Eightfold Way, Color, Quarks, Gluons and, with Harald Fritzsch, the standard field theory of strong interactions, Quantum Chromodynamics (QCD).He also proposed with Richard Feynman the V-A theory of beta decay. Gell-Mann discovered the Current Algebra, proposed (with Levy) the sigma model of pions and the see-saw mechanism for the neutrino masses.
New Edition: Introductory Quantum Physics and Relativity (2nd Edition)This book is based on the lecture courses taught by Dunningham and Vedral at the University of Leeds. The book contains all the necessary material for quantum physics and relativity in the first two years of a typical physics degree course. The choice of topics complies fully with the Institute of Physics guidelines, but the coverage also includes more interesting and up-to-date applications, such as Bose condensation and quantum teleportation.
The book provides readers with an understanding of the mutual conditioning of spacetime and interactions and matter. The spacetime manifold will be looked at to be a reservoir for the parametrization of operation Lie groups or subgroup classes of Lie groups. With basic operation groups or Lie algebras, all physical structures can be interpreted in terms of corresponding realizations or representations. Physical properties are related eigenvalues or invariants. As an explicit example of operational spacetime is proposed, called electroweak spacetime, parametrizing the classes of the internal hypercharge - isospin group in the general linear group in two complex dimensions, i.e., the Lorentz cover group, extended by the casual (dilation) and phase group. Its representations and invariants will be investigated with the aim to connect them, qualitatively and numerically, with the properties of interactions and particles as arising in the representations of its tangent Minkowski spaces.
In his rich and varied career as a mathematician, computer scientist, and educator, Jacob T. Schwartz wrote seminal works in analysis, mathematical economics, programming languages, algorithmics, and computational geometry. In this volume of essays, his friends, students, and collaborators at the Courant Institute of Mathematical Sciences present recent results in some of the fields that Schwartz explored: quantum theory, the theory and practice of programming, program correctness and decision procedures, dextrous manipulation in Robotics, motion planning, and genomics. In addition to presenting recent results in these fields, these essays illuminate the astonishingly productive trajectory of a brilliant and original scientist and thinker.
Quantum mechanics forms the foundation of all modern physics, including atomic, nuclear, and molecular physics, the physics of the elementary particles, condensed matter physics. Modern astrophysics also relies heavily on quantum mechanics. Quantum theory is needed to understand the basis for new materials, new devices, the nature of light coming from stars, the laws which govern the atomic nucleus, and the physics of biological systems. As a result the subject of this book is a required course for most physics graduate students. While there are many books on the subject, this book targets specifically graduate students and it is written with modern advances in various fields in mind. Many examples treated in the various chapters as well as the emphasis of the presentation in the book are designed from the perspective of such problems. For example, the book begins by putting the Schroedinger equation on a spatial discrete lattice and the continuum limit is also discussed, inspired by Hamiltonian lattice gauge theories. The latter and advances in quantum simulations motivated the inclusion of the path integral formulation. This formulation is applied to the imaginary-time evolution operator to project the exact ground state of the harmonic oscillator as is done in quantum simulations. As an example of how to take advantage of symmetry in quantum mechanics, one-dimensional periodic potentials are discussed, inspired by condensed matter physics. Atoms and molecules are discussed within mean-field like treatment (Hartree-Fock) and how to go beyond it. Motivated by the recent intense activity in condensed matter and atomic physics to study the Hubbard model, the electron correlations in the hydrogen molecule are taken into account by solving the two-site Hubbard model analytically. Using the canonical Hamiltonian quantization of quantum electrodynamics, the photons emerge as the quanta of the normal modes, in the same way as the phonons emerge in the treatment of the normal modes of the coupled array of atoms. This is used later to treat the interaction of radiation with atomic matter.
This is the seventh volume in a series on the general topics of supersymmetry, supergravity, black objects (including black holes) and the attractor mechanism. The present volume is based on lectures held in March 2013 at the INFN-Laboratori Nazionali di Frascati during the Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity Workshop (BUDS 2013), organized by Stefano Bellucci, with the participation of prestigious speakers including P. Aschieri, E. Bergshoeff, M. Cederwall, T. Dennen, P. Di Vecchia, S. Ferrara, R. Kallosh, A. Karlsson, M. Koehn, B. Ovrut, A. Van Proeyen, G. Ruppeiner. Special attention is devoted to discussing topics related to the cancellation of ultraviolet divergences in extended supergravity and Born-Infeld-like actions. All talks were followed by extensive discussions and subsequent reworking of the various contributions a feature which is reflected in the unique "flavor" of this volume.
This thesis describes the experimental work that finally led to a successful measurement of coherent elastic neutrino-nucleus scattering-a process proposed forty-three years ago. The experiment was performed at the Spallation Neutron Source facility, sited at Oak Ridge National Laboratory, in Tennessee. Of all known particles, neutrinos distinguish themselves for being the hardest to detect, typically requiring large multi-ton devices for the job. The process measured here involves the difficult detection of very weak signals arising from nuclear recoils (tiny neutrino-induced "kicks" to atomic nuclei), but leads to a much larger probability of neutrino interaction when compared to all other known mechanisms. As a result of this, "neutrino technologies" using miniaturized detectors (the author's was handheld and weighed only 14 kg) become a possibility. A large community of researchers plans to continue studying this process, facilitating an exploration of fundamental neutrino properties that is presently beyond the sensitivity of other methods.
The fundamental concept of quantum coherence plays a central role in quantum physics, cutting across disciplines of quantum optics, atomic and condensed matter physics. Quantum coherence represents a universal property of the quantum s- tems that applies both to light and matter thereby tying together materials and p- nomena. Moreover, the optical coherence can be transferred to the medium through the light-matter interactions. Since the early days of quantum mechanics there has been a desire to control dynamics of quantum systems. The generation and c- trol of quantum coherence in matter by optical means, in particular, represents a viable way to achieve this longstanding goal and semiconductor nanostructures are the most promising candidates for controllable quantum systems. Optical generation and control of coherent light-matter states in semiconductor quantum nanostructures is precisely the scope of the present book. Recently, there has been a great deal of interest in the subject of quantum coh- ence. We are currently witnessing parallel growth of activities in different physical systems that are all built around the central concept of manipulation of quantum coherence. The burgeoning activities in solid-state systems, and semiconductors in particular, have been strongly driven by the unprecedented control of coherence that previously has been demonstrated in quantum optics of atoms and molecules, and is now taking advantage of the remarkable advances in semiconductor fabrication technologies. A recent impetus to exploit the coherent quantum phenomena comes from the emergence of the quantum information paradigm.
A ground-breaking and practical treatment of probability and stochastic processes "A Modern Theory of Random Variation" is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. In addition, an array of numerical examples and vivid illustrations showcase how the presented methods and applications can be undertaken at various levels of complexity. "A Modern Theory of Random Variation" is a suitable book for courses on mathematical analysis, probability theory, and mathematical finance at the upper-undergraduate and graduate levels. The book is also an indispensible resource for researchers and practitioners who are seeking new concepts, techniques and methodologies in data analysis, numerical calculation, and financial asset valuation. Patrick Muldowney, PhD, served as lecturer at the Magee Business School of the UNiversity of Ulster for over twenty years. Dr. Muldowney has published extensively in his areas of research, including integration theory, financial mathematics, and random variation.
Quantum mechanics is one of the great success stories of modern physics, making sense of the very small just as Einstein's theory of relativity made sense of the very large. But, for most students, the ideas that make quantum mechanics powerful can be confusing and counterintuitive. This volume in the Greenwood Guides to Great Ideas in Science series provides a history of quantum mechanics from the early breakthroughs of Planck and Einstein, at the beginning of the 20th century, to the present frontiers of quantum computing and quantum gravity. The approach is entirely non-technical, and is aimed at the general reader who may not have much mathematical background but who has a strong curiosity about some of the most important developments in modern science. Quantum Mechanics: A Historical Perspective traces the history of this powerful theory, including: BLThe early discoveries by Max Planck and Albert Einstein regarding the quantization of radiation BLThe "early quantum theory," including Neils Bohr's theory of the atom BLThe birth of modern quantum mechanics through the work of Heisenberg, Schrodinger, Born, Dirac and others BLApplications of quantum mechanics in chemistry, nuclear physics, electronics, and many other areas BLRecent work in quantum computation and quantum information theory The book emphasizes the fact that despite the great success of quantum mechanics, many exciting intellectual frontiers remain open for further researchers to explore. It includes a glossary, a timeline, and a bibliography of accessible resources for further research.
This book is aimed at those readers who already have some knowledge of mathematical methods and have also been introduced to the basic ideas of quantum optics. It should be attractive to students who have already explored one of the more introductory texts such as Loudon's The quantum theory of light (2/e, 1983, OUP) and are seeking to acquire the mathematical skills used in real problems. This book is not primarily about the physics of quantum optics but rather presents the mathematical methods widely used by workers in this field. There is no comparable book which covers either the range or the depth of mathematical techniques.
This thesis offers a comprehensive introduction to surface acoustic waves in the quantum regime. It addresses two of the most significant technological challenges in developing a scalable quantum information processor based on spins in quantum dots: (i) decoherence of the electronic spin qubit due to the surrounding nuclear spin bath, and (ii) long-range spin-spin coupling between remote qubits. Electron spins confined in quantum dots (QDs) are among the leading contenders for implementing quantum information processing. To this end, the author pursues novel strategies that turn the unavoidable coupling to the solid-state environment (in particular, nuclear spins and phonons) into a valuable asset rather than a liability.
The essays in this volume concern the points of intersection between analytic philosophy and the philosophy of the exact sciences. More precisely, it concern connections between knowledge in mathematics and the exact sciences, on the one hand, and the conceptual foundations of knowledge in general. Its guiding idea is that, in contemporary philosophy of science, there are profound problems of theoretical interpretation-- problems that transcend both the methodological concerns of general philosophy of science, and the technical concerns of philosophers of particular sciences. A fruitful approach to these problems combines the study of scientific detail with the kind of conceptual analysis that is characteristic of the modern analytic tradition. Such an approach is shared by these contributors: some primarily known as analytic philosophers, some as philosophers of science, but all deeply aware that the problems of analysis and interpretation link these fields together.
This thesis presents a study of the scalar sector in the standard model (SM), as well as various searches for an extended scalar sector in theories beyond the SM (BSM). The first part of the thesis details the search for an SM Higgs boson decaying to taus, and produced by gluon fusion, vector boson fusion, or associated production with a vector boson, leading to evidence for decays of the Higgs boson to taus. In turn, the second part highlights several searches for an extended scalar sector, with scalar boson decays to taus. In all of the analyses presented, at least one scalar boson decays to a pair of taus. The results draw on data collected by the Compact Muon Solenoid (CMS) detector during proton-proton collisions with a center-of-mass energy of 7 or 8 TeV. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
|