![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
Made into a major motion picture, this moving memoir written by Stephen Hawking’s first wife covers the turbulent years of her marriage to the astrophysics genius, her traumatic divorce, and their recent reconciliation Professor Stephen Hawking is one of the most famous and remarkable scientists of our age and the author of the scientific bestseller A Brief History of Time, which has sold more than 25 million copies. In this compelling memoir, his first wife, Jane Hawking, relates the inside story of their extraordinary marriage. As Stephen's academic renown soared, his body was collapsing under the assaults of a motor neuron disease. Jane's candid account of trying to balance his 24-hour care with the needs of their growing family reveals the inner strength of the author, while the self-evident character and achievements of her husband make for an incredible tale presented with unflinching honesty. Jane's candor is no less apparent when the marriage finally ends in a high-profile meltdown, with Stephen leaving Jane for one of his nurses and Jane marrying an old family friend. In this exceptionally open, moving, and often funny memoir, Jane Hawking confronts not only the acutely complicated and painful dilemmas of her first marriage, but also the relationship's fault lines exposed by the pervasive effects of fame and wealth. The result is a book about optimism, love, and change that will resonate with readers everywhere. readers everywhere.
Foams are ubiquitous in our daily lives. Their presence is highly desirable in certain foods, drinks and cosmetics, and they are essential in oil recovery and mineral extraction. In some industrial processes (such as the manufacture of glass, paper and wine) foams are an unwelcome by-product. Why do they appear? What controls the rate at which they disappear? Do they flow in the same way as ordinary liquids? All of these questions and more are addressed here, incorporating significant recent contributions to the field of foams. This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.
Bundles, connections, metrics and curvature are the 'lingua franca'
of modern differential geometry and theoretical physics. This book
will supply a graduate student in mathematics or theoretical
physics with the fundamentals of these objects.
An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microelectronics, lasers, nanotechnology, and several other topics that impinge on modern life.
In July 2009, many experts in the mathematical modeling of
biological sciences gathered in Les Houches for a 4-week summer
school on the mechanics and physics of biological systems. The goal
of the school was to present to students and researchers an
integrated view of new trends and challenges in physical and
mathematical aspects of biomechanics. While the scope for such a
topic is very wide, they focused on problems where solid and fluid
mechanics play a central role. The school covered both the general
mathematical theory of mechanical biology in the context of
continuum mechanics but also the specific modeling of particular
systems in the biology of the cell, plants, microbes, and in
physiology.
This book is dedicated to Professor Leonid V Keldysh. His brilliant contributions to condensed matter physics include the Franz-Keldysh effect, an electron-hole liquid, the nonequilibrium (Keldysh) diagram technique, Bose-Einstein condensation (of excitons) and a metal-dielectric'' transition, acoustically-induced superlattices, multi-photon transitions and impact ionization in solids. In many respects, his work influenced and formed the paradigm of modern condensed matter physics. As a result, many famous researchers in the field have enthusiastically provided unique contributions to the book.
A series of seminal technological revolutions has led to a new generation of electronic devices miniaturized to such tiny scales where the strange laws of quantum physics come into play. There is no doubt that, unlike scientists and engineers of the past, technology leaders of the future will have to rely on quantum mechanics in their everyday work. This makes teaching and learning the subject of paramount importance for further progress. Mastering quantum physics is a very non-trivial task and its deep understanding can only be achieved through working out real-life problems and examples. It is notoriously difficult to come up with new quantum-mechanical problems that would be solvable with a pencil and paper, and within a finite amount of time. This book remarkably presents some 700+ original problems in quantum mechanics together with detailed solutions covering nearly 1000 pages on all aspects of quantum science. The material is largely new to the English-speaking audience. The problems have been collected over about 60 years, first by the lead author, the late Prof. Victor Galitski, Sr. Over the years, new problems were added and the material polished by Prof. Boris Karnakov. Finally, Prof. Victor Galitski, Jr., has extended the material with new problems particularly relevant to modern science.
General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.
For the calculus-based General Physics course primarily taken by engineers and science majors (including physics majors). This long-awaited and extensive revision maintains Giancoli's reputation for creating carefully crafted, highly accurate and precise physics texts. Physics for Scientists and Engineers combines outstanding pedagogy with a clear and direct narrative and applications that draw the student into the physics. The new edition also features an unrivaled suite of media and on-line resources that enhance the understanding of physics. This book is written for students. It aims to explain physics in a readable and interesting manner that is accessible and clear, and to teach students by anticipating their needs and difficulties without oversimplifying. Physics is a description of reality, and thus each topic begins with concrete observations and experiences that students can directly relate to. We then move on to the generalizations and more formal treatment of the topic. Not only does this make the material more interesting and easier to understand, but it is closer to the way physics is actually practiced.
For the calculus-based General Physics course primarily taken by engineers and science majors (including physics majors). This long-awaited and extensive revision maintains Giancoli's reputation for creating carefully crafted, highly accurate and precise physics texts. Physics for Scientists and Engineers combines outstanding pedagogy with a clear and direct narrative and applications that draw the student into the physics. The new edition also features an unrivaled suite of media and on-line resources that enhance the understanding of physics. This book is written for students. It aims to explain physics in a readable and interesting manner that is accessible and clear, and to teach students by anticipating their needs and difficulties without oversimplifying. Physics is a description of reality, and thus each topic begins with concrete observations and experiences that students can directly relate to. We then move on to the generalizations and more formal treatment of the topic. Not only does this make the material more interesting and easier to understand, but it is closer to the way physics is actually practiced.
Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.
Quantum City explores the metaphorical relationships between quantum theory, urban design and the concept of the city, with a very serious aim: to radically change the way the urban realm is both experienced and designed.Using the terminology and themes of quantum theory and the 'new physics', the author draws the reader into an intriguing discussion of the principles, practices and operations of urbanism. This new language offers the missing interface between the different disciplines of the city, and promises to be a potent metaphor for the development of various theories for the 21st century city.Challenging traditional approaches to the theory of cities, this thought-provoking book will be enjoyed by both design professionals and anyone interested in the city, its history and culture.
The benchmark for clarity and rigor, influenced by the latest in education research. Since its first edition, University Physics has been revered for its emphasis on fundamental principles and how to apply them. This text is known for its clear and thorough narrative, as well as its uniquely broad, deep, and thoughtful sets of worked examples that provide students with key tools for developing both conceptual understanding and problem-solving skills. The Fourteenth Edition improves the defining features of the text while adding new features influenced by education research to teach the skills needed by today’s students. A focus on visual learning, new problem types, and pedagogy informed by MasteringPhysics metadata headline the improvements designed to create the best learning resource for physics students. MasteringPhysics® not included. Students, if MasteringPhysics is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. My##Lab should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information. MasteringPhysics is an online homework, tutorial, and assessment product designed to personalize learning and improve results. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts.
Flight dynamics create important research problems in the process of helicopter design. They involve advanced design ideas and engineering technology theories. This book concerns flight theory and research methods for helicopter flight science and technology. The contents include the fundamentals of rotor aerodynamics, helicopter trim, helicopter stability and control, and helicopter performance analyses. The book also lokks at the kinematics, dynamics, control, and aerodynamics of the helicopter during maneuvering flight. With an emphasis on the physical concepts, the characteristics of rotor flapping, theoretical analyses and numerical simulation methods for helicopter flight mechanics are detail described in detail. The book is primarily intended for senior undergraduates and postgraduates who major in aerospace engineering. It is also a good reference book for helicopter engineers interested design and operational engineering. It lays a foundation for the study of helicopter aeromechanics.
Get the answers you need at your fingertips faster than any other source. Success in Physics is critical when entering the growing fields of technology, computer science and engineering that will support our future progress and innovation with breakthroughs and advances. To help retain the facts, equations and concepts essential to success in class and beyond, these 6 laminated pages can be referenced quickly and easily while studying, as a refresher before exams or even as a desktop reference beyond school. Expertly written by author, editor and professor Brett Kaabel PhD, and designed for quick use and high retention. Be sure to get our original Physics guide and Physics 2 for more complete coverage and better grades for an unmatched value. 6 page laminated guide includes: Introduction, Constants & Definitions Classical Mechanics Kinematics, Newton's Laws Work & Kinetic Energy, Potential Energy (U) Conservation of Energy, Momentum Simple Harmonic Motion (SHM) Gravitation Thermodynamics Temperature Scales Zeroth Law, First Law & Second Law of Thermodynamics Thermal Properties of Systems Kinetic Theory of Gasses Waves Types of Waves Transverse vs. Longitudinal Waves Wave Equation Electromagnetism Electric Charge, Electric Field Magnetic Field, Magnetic Fluz Gauss's Law for Magnetism Faraday's Law of Induction Electromagnetic Waves, Electric Circuits Special Relativity Einstein's Postulates, Time Dilation Length Contraction Lorentz Transformation, Velocity Transformation Relativistic Doppler Effect Relativistic Energy & Momentum Quantum Mechanics Quantized Atomic Energy Levels Nuclear Physics Atoms, Nuclei, Nuclear Forces Radioactivity, Nuclear Reactions Force Carriers
A NEW YORK TIMES BESTSELLER Do we have free will? Is the universe compatible with God? Do we live in a computer simulation? Does the universe think? Physicists are great at complicated research, but they are less good at telling us why it matters. In this entertaining and groundbreaking book, theoretical physicist Sabine Hossenfelder breaks down why we should care. Drawing on the latest research in quantum mechanics, black holes, string theory and particle physics, Existential Physics explains what modern physics can tell us about the big questions. Filled with counterintuitive insights and including interviews with other leading scientists, this clear and yet profound book will reshape your understanding of science and the limits of what we can know.
Developed for the new International A Level specification, these new resources are specifically designed for international students, with a strong focus on progression, recognition and transferable skills, allowing learning in a local context to a global standard. Recognised by universities worldwide and fully comparable to UK reformed GCE A levels. Supports a modular approach, in line with the specification. Appropriate international content puts learning in a real-world context, to a global standard, making it engaging and relevant for all learners. Reviewed by a language specialist to ensure materials are written in a clear and accessible style. The embedded transferable skills, needed for progression to higher education and employment, are signposted so students understand what skills they are developing and therefore go on to use these skills more effectively in the future. Exam practice provides opportunities to assess understanding and progress, so students can make the best progress they can.
This book summarizes the enormous amount of material accumulated in the field of nuclear density functional theory over the last few decades. The goal of the theory is to provide a complete quantum-mechanical description and explanation of nuclear phenomena in terms of the local density distribution as a basic ingredient rather than the many-particle wavefunction. This leads to a considerable reduction in the mathematical complexity of nuclear many-body problems and to a great conceptual simplicity and visual clarity in its theoretical treatment. The authors develop the mathematical framework on which the theory is based and consider the associated approaches used to analyse experimental data in a variety of nuclei and nuclear processes with widely differing properties.
Developed for the new International A Level specification, these new resources are specifically designed for international students, with a strong focus on progression, recognition and transferable skills, allowing learning in a local context to a global standard. Recognised by universities worldwide and fully comparable to UK reformed GCE A levels. Supports a modular approach, in line with the specification. Appropriate international content puts learning in a real-world context, to a global standard, making it engaging and relevant for all learners. Reviewed by a language specialist to ensure materials are written in a clear and accessible style. The embedded transferable skills, needed for progression to higher education and employment, are signposted so students understand what skills they are developing and therefore go on to use these skills more effectively in the future. Exam practice provides opportunities to assess understanding and progress, so students can make the best progress they can.
Developed for the new International A Level specification, these new resources are specifically designed for international students, with a strong focus on progression, recognition and transferable skills, allowing learning in a local context to a global standard. Recognised by universities worldwide and fully comparable to UK reformed GCE A levels. Supports a modular approach, in line with the specification. Appropriate international content puts learning in a real-world context, to a global standard, making it engaging and relevant for all learners. Reviewed by a language specialist to ensure materials are written in a clear and accessible style. The embedded transferable skills, needed for progression to higher education and employment, are signposted so students understand what skills they are developing and therefore go on to use these skills more effectively in the future. Exam practice provides opportunities to assess understanding and progress, so students can make the best progress they can.
|
![]() ![]() You may like...
Scanning Probe Microscopy of Soft Matter…
V.V. Tsukruk
Hardcover
Principles of Physics, Extended
David Halliday, Robert Resnick, …
Paperback
R1,655
Discovery Miles 16 550
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, …
Paperback
R1,523
Discovery Miles 15 230
Higher Physics - Practise and Learn Sqa…
Paul Ferguson, Leckie
Paperback
![]()
|