![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics
Leonhard Euler's Letters to a German Princess: A Milestone in the History of Physics Textbooks and More is a milestone in the history of physics textbooks and the instruction of women in the sciences. It also covers views of its author on epistemology, religion, and innovations in scientific equipment, including telescopes and microscopes. Today, 250 years later, we study this work of Euler's as a foundation for the history of physics teaching and analyze the letters from an historical and pedagogical point of view.
Advances in Imaging and Electron Physics, Volume 212, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
The book contains 9 chapters out of which Chapters (1-2) deals with the "Point Estimation", (3) Interval estimation, (4-5) Test of hypothesis, (6) Sequential statistics, (7) Decision theory, (8) Linear estimation and (9) Theory of ordered statistics.
Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices.
Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment: A Remote Sensing Approach reviews multivariate hazards in a non-stationary environment, covering both short and long-term predictions from earth observations, along with long-term climate dynamics and models. The book provides a detailed overview of remotely sensed observations, current and future satellite missions useful for hydrologic studies and water resources engineering, and a review of hydroclimatic hazards. Given these tools, readers can improve their abilities to monitor, model and predict these extremes with remote sensing. In addition, the book covers multivariate hazards, like landslides, in case studies that analyze the combination of natural hazards and their impact on the natural and built environment. Finally, it ties hydroclimatic hazards into the Sendai Framework, providing another set of tools for reducing disaster impacts.
Semiconductors and Modern Electronics is a brief introduction to the physics behind semiconductor technologies. Chuck Winrich, a physics professor at Babson College, explores the topic of semiconductors from a qualitative approach to understanding the theories and models used to explain semiconductor devices. Applications of semiconductors are explored and understood through the models developed in the book. The qualitative approach in this book is intended to bring the advanced ideas behind semiconductors to the broader audience of students who will not major in physics. Much of the inspiration for this book comes from Dr. Winrich's experience teaching a general electronics course to students majoring in business. The goal of that class, and this book, is to bring forward the science behind semiconductors, and then to look at how that science affects the lives of people.
A world-recognized expert in the science of vehicle dynamics, Dr. Thomas Gillespie has created an ideal reference book that has been used by engineers for 30 years, ranging from an introduction to the subject at the university level to a common sight on the desks of engineers throughout the world. As with the original printing, Fundamentals of Vehicle Dynamics, Revised Edition, strives to find a middle ground by balancing the need to provide detailed conceptual explanations of the engineering principles involved in the dynamics of ground vehicles with equations and example problems that clearly and concisely demonstrate how to apply such principles. A study of this book will ensure that the reader comes away with a solid foundation and is prepared to discuss the subject in detail. Ideal as much for a first course in vehicle dynamics as it is a professional reference, Fundamentals of Vehicle Dynamics, Revised Edition, maintains the tradition of the original by being easy to read and while receiving updates throughout in the form of modernized graphics and improved readability.
Advances in Geophysics, Volume 60, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including Marchenko imaging, Fiber-optic sensing and distributed acoustic sensing, Diffractions, and Time-lapse interferometry across scales.
Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists.
In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.
Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change presents an integrated, collaborative approach to observing and understanding various surface temperatures from a whole-Earth perspective. The book describes the progress in improving the quality of surface temperatures across different domains of the Earth's surface (air, land, sea, lakes and ice), assessing variability and long-term trends, and providing applications of surface temperature data to detect and better understand Earth system behavior. As cooperation is essential between scientific communities, whose focus on particular domains of Earth's surface and on different components of the observing system help to accelerate scientific understanding and multiply the benefits for society, this book bridges the gap between domains.
Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices.
Advances in Atomic, Molecular, and Optical Physics, Volume 68, provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts. Updates to this new release include sections on Nonlinear x-ray physics, High intensity QED, Rydberg THz spectroscopy, Ultrafast electron diffraction, Precision Interferometry for Gravitation-wave Detection: Current Status and Future Trends, and more.
The Asian Summer Monsoon: Characteristics, Variability, Teleconnections and Projection focuses on the connections between the Indian Summer and East Asian Summer Monsoons, also including the South China Sea Summer Monsoon. While these systems have profound differences, their interactions have significant impacts on the climatic regimes in the region and throughout the world. In summer, the ASM engine pumps moisture transported across thousands of miles from the Indian and Pacific Oceans to the monsoon regions, producing heavy rains over south and east Asia and its adjacent marginal seas. This book reviews the different subsystems and their impact, providing guidance to enhance prediction models. |
You may like...
Single Molecule Spectroscopy in…
Astrid Graslund, Rudolf Rigler, …
Hardcover
R5,271
Discovery Miles 52 710
Wittgenstein within the Philosophy of…
Thomas D. Carroll
Hardcover
An educator's guide to effective…
S.A. Coetzee, E.J. van Niekerk
Paperback
R704
Discovery Miles 7 040
Multimedia Cartography
William Cartwright, Michael P. Peterson, …
Hardcover
R5,246
Discovery Miles 52 460
Demystifying Graph Data Science - Graph…
Pethuru Raj, Abhishek Kumar, …
Hardcover
|