![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
What does it take to consider a planet potentially habitable? If a planet is suitable for life, could life be present? Is life on other planets inevitable? Searching for Habitable Worlds answers these questions and provides both the general public and astronomy enthusiasts with a richly illustrated discussion of the most current knowledge regarding the search for extrasolar planets. Nearly everyone wants to know if we are alone in the universe. This book might not have the answers, but shows where we should look. This book is a fun and accessible book for everyone from middle schoolers to amateur astronomers of all ages. The use of non-technical language and abundant illustrations make this a quick read to inform everyone about the latest movement in the search for other planets that we might be able to inhabit. After a brief discussion on why humans are hard-wired to be curious, and to explore the unknown, the book describes what extrasolar planets are, how to detect them, and how to pin down potential targets. In addition, a data-driven list of the best candidates for habitability is profiled and the next generation of exoplanet-hunting scientific instruments and probes are identified.
The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the Universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes onto describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly on indirectly.
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
Advances in Atomic, Molecular, and Optical Physics provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts that contain relevant review material and detailed descriptions of important developments in the field.
The development of man's understanding of planetary motions is the crown jewel of Newtonian mechanics. This book offers a concise but self-contained handbook-length treatment of this historically important topic for students at about the third-year-level of an undergraduate physics curriculum. After opening with a review of Kepler's three laws of planetary motion, it proceeds to analyze the general dynamics of 'central force' orbits in spherical coordinates, how elliptical orbits satisfy Newton's gravitational law, and how the geometry of ellipses relates to physical quantities, such as energy and momentum. Exercises are provided, and derivations are set up in such a way that readers can gain analytic practice by filling in the missing steps. A brief bibliography lists sources for readers who wish to pursue further study on their own.
Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research.
Big on Bk: Current Insights into the Function of Large Conductance Voltage- and Ca2+- Activated K+ Channels at the Molecular, Cellular and Systemic Levels, a volume in the International Review of Neurobiology series, is a comprehensive overview of the state-of-the-art research into this area. It reviews current knowledge and understanding, and also provides a starting point for researchers and practitioners entering the field.
Geological Controls for Gas Hydrate Formations and Unconventionals tells the story of unconventional hydrocarbon resources, especially gas hydrates, tight gas, shale gas, liquid- rich shale, and shale oil, to future generations. It presents the most current research in unconventionals, covering structural constituents of continental margins and their role in generating hydrocarbons. Additionally, this book answers basic questions regarding quantifications and characterizations, distributions, modes of occurrence, physical and chemical properties, and more - in essence, all the information that is necessary to improve the models for precision prediction of the enigma of gas hydrates and other unconventionals. Blending geology, geophysics, geomechanics, petrophysics, and reservoir engineering, it explains in simple language the scientific concepts that are necessary to develop geological and reservoir models for unconventionals. Serving as a focal point for geoscientists and engineers conducting research that focuses on reservoir characteristics of unconventionals, Geological Controls for Gas Hydrate Formations and Unconventionals is a useful resource for a variety of other specialiststies including physicists, geochemists, exploration geologists, and petroleum and reservoir engineers. It details the key factors for successful exploration and development of unconventional reservoirs including discovery, data evaluation, full-field development, production, and abandonment, along with a vivid description ofn the worldwide occurrence of unconventional hydrocarbons.
Domain theory, a subject that arose as a response to natural concerns in the semantics of computation, studies ordered sets which possess an unusual amount of mathematical structure. This book explores its connection with quantum information science and the concept that relates them: disorder. This is not a literary work. It can be argued that its subject, domain theory and quantum information science, does not even really exist, which makes the scope of this alleged 'work' irrelevant. BUT, it does have a purpose and to some extent, it can also be said to have a method. I leave the determination of both of those largely to you, the reader. Except to say, I am hoping to convince the uninitiated to take a look. A look at what? Twenty years ago, I failed to satisfactorily prove a claim that I still believe: that there is substantial domain theoretic structure in quantum mechanics and that we can learn a lot from it. One day it will be proven to the point that people will be comfortable dismissing it as a 'well-known' idea that many (possibly including themselves) had long suspected but simply never bothered to write down. They may even call it "obvious!" I will not bore you with a brief history lesson on why it is not obvious, except to say that we have never been interested in the difficulty of proving the claim only in establishing its validity. This book then documents various attempts on my part to do just that.
This is an introductory textbook on computational methods and techniques intended for undergraduates at the sophomore or junior level in the fields of science, mathematics, and engineering. It provides an introduction to programming languages such as FORTRAN 90/95/2000 and covers numerical techniques such as differentiation, integration, root finding, and data fitting. The textbook also entails the use of the Linux/Unix operating system and other relevant software such as plotting programs, text editors, and mark up languages such as LaTeX. It includes multiple homework assignments.
This unique compendium deals with modeling magnetic media exhibiting hysteresis using computationally efficient phenomenological models that may be utilized in a wide spectrum of both coupled and non-coupled situations. The main factors affecting the behavior of media exhibiting hysteresis - such as magnetic field, mechanical stress and temperature - are dealt with from a higher-level perspective.The volume offers a brief review of well-established definitions of the hysteresis phenomena and widely utilized models. It then presents in its separate chapters a set of innovative efficient multi-component hysteresis models, some of which involves novel operators and/or neural network activation functions as primitive building blocks. Identification methodologies, simulations and experimental verifications for the presented models are also prominently highlighted.This useful reference text offers a great resource material for academics, professionals, researchers and graduate students in electrical and electronic engineering, superconductivity, magnetic materials and mechanical engineering.
This book focuses on the emergence of creative ideas from cognitive and social dynamics. In particular, it presents data, models, and analytical methods grounded in a network dynamics approach. It has long been hypothesized that innovation arises from a recombination of older ideas and concepts, but this has been studied primarily at an abstract level. In this book, we consider the networks underlying innovation - from the brain networks supporting semantic cognition to human networks such as brainstorming groups or individuals interacting through social networks - and relate the emergence of ideas to the structure and dynamics of these networks. Methods described include experimental studies with human participants, mathematical evaluation of novelty from group brainstorming experiments, neurodynamical modeling of conceptual combination, and multi-agent modeling of collective creativity. The main distinctive features of this book are the breadth of perspectives considered, the integration of experiments with theory, and a focus on the combinatorial emergence of ideas.
The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.
The book contains a detailed account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force (free fall), motion under Hooke's law force (simple harmonic motion), motion under combination of Hooke's law force and a velocity dependent damping force (damped harmonic motion) and radioactive decay law. Also included are uses of Mathematica in dealing with complex numbers, in solving system of linear equations, in carrying out differentiation and integration, and in dealing with matrices.
This book sheds light on the molecular aspects of liquids and liquid-based materials such as organic or inorganic liquids, ionic liquids, proteins, biomaterials, and soft materials including gels. The reader discovers how the molecular basics of such systems are connected with their properties, dynamics, and functions. Once the use and application of liquids and liquid-based materials are understood, the book becomes a source of the latest, detailed knowledge of their structures, dynamics, and functions emerging from molecularity. The systems discussed in the book have structural dimensions varying from nanometers to millimeters, thus the precise estimation of structures and dynamics from experimental, theoretical, and simulation methods is of crucial importance. Outlines of the practical knowledge needed in research and development are helpfully included in the book.
Biophotonic diagnostics/biomedical spectroscopy can revolutionise the medical environment by providing a responsive and objective diagnostic environment. This book aims to explain the fundamentals of the physical techniques used combined with the particular requirements of analysing medical/clinical samples as a resource for any interested party. In addition, it will show the potential of this field for the future of medical science and act as a driver for translation across many different biological problems/questions. |
![]() ![]() You may like...
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,846
Discovery Miles 48 460
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,409
Discovery Miles 34 090
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R82,245
Discovery Miles 822 450
|