![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
High speed catamaran and multihull high speed marine vessel have become very popular in the last two decades. The catamaran has become the vessel of choice for the majority of high speed ferry operators worldwide. There have been significant advances in structural materials, and structural design has been combined with higher power density and fuel efficient engines to deliver ferries of increasing size. The multihull has proven itself to be a suitable configuration for active power projection across oceans as well as for coastal patrol and protection, operating at high speedd for insertion or retrieval with a low energy capability. At present there is no easily accessible material covering the combination of hydrodynamics, aerodynamics, and design issues including structures, powering and propulsion for these vehicles. Coverage in High Speed Catamarans and Multihulls includes an introduction to the history, evolution, and development of catamarans, followed by a theoretical calculation of wave resistance in shallow and deep water, as well as the drag components of the multihull. A discussion of vessel concept design describing design characteristics, empirical regression for determination of principal dimensions in preliminary design, general arrangement, and methods is also included. The book concludes with a discussion of experimental future vehicles currently in development including the small waterplane twin hull vessels, wave piercing catamarans, planing catamarans, tunnel planing catamarans and other multihull vessels.
Optical properties, particularly in the infrared range of wavelengths, continue to be of enormous interest to both material scientists and device engineers. The need for the development of standards for data of optical properties in the infrared range of wavelengths is very timely considering the on-going transition of nano-technology from fundamental R&D to manufacturing. Radiative properties play a critical role in the processing, process control and manufacturing of semiconductor materials, devices, circuits and systems. The design and implementation of real-time process control methods in manufacturing requires the knowledge of the radiative properties of materials. Sensors and imagers operate on the basis of the radiative properties of materials. This book reviews the optical properties of various semiconductors in the infrared range of wavelengths. Theoretical and experimental studies of the radiative properties of semiconductors are presented. Previous studies, potential applications and future developments are outlined. In Chapter 1, an introduction to the radiative properties is presented. Examples of instrumentation for measurements of the radiative properties is described in Chapter 2. In Chapters 3-11, case studies of the radiative properties of several semiconductors are elucidated. The modeling and applications of these properties are explained in Chapters 12 and 13, respectively. In Chapter 14, examples of the global infrastructure for these measurements are illustrated.
Magmas under Pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts summarizes recent advances in experimental technologies for studying magmas at high pressures. In the past decade, new developments in high-pressure experiments, particularly with synchrotron X-ray techniques, have advanced the study of magmas under pressure. These new experiments have revealed significant changes of structure and physical properties of magmas under pressure, which significantly improves our understanding of the behavior of magmas in the earth's interior. This book is an important reference, not only in the earth and planetary sciences, but also in other scientific fields, such as physics, chemistry, material sciences, engineering and in industrial applications, such as glass formation and metallurgical processing.
The effect which now bears his name, was discovered in 1958 by Rudolf Moessbauer at the Technical University of Munich. At first, this appeared to be a phenomenon related to nuclear energy levels that provided some information about excited state lifetimes and quantum properties. However, it soon became apparent that Moessbauer spectroscopy had applications in such diverse fields as general relativity, solid state physics, chemistry, materials science, biology, medical physics, archeology and art. It is the extreme sensitivity of the effect to the atomic environment around the probe atom as well as the ability to apply the technique to some interesting and important elements, most notably iron, that is responsible for the Moessbauer effect's extensive use. The present volume reviews the historical development of the Moessbauer effect, the experimental details, the basic physics of hyperfine interactions and some of the numerous applications of Moessbauer effect spectroscopy.
Optics has been part of scientific enquiry from its beginning and remains a key element of modern science. This book provides a concise treatment of physical optics starting with a brief summary of geometrical optics. Scalar diffraction theory is introduced to describe wave propagation and diffraction effects and provides the basis for Fourier methods for treating more complex diffraction problems. The rest of the book treats the physics underlying some important instruments for spectral analysis and optical metrology, reflection and transmission at dielectric surfaces and the polarization of light. This undergraduate-level text aims to aid understanding of optical applications in physical, engineering and life sciences or more advanced topics in modern optics.
Electrostatic forces are essential for the hierarchical structure of matter: electrons are bound to the atomic nucleus by electrostatic forces; atoms carry (partial) charges and ions with opposite charges attract and form (chemical) bonds. Small residual electrostatic forces between molecules allow them to form macroscopic structures such as crystals. Electrostatic interactions explain pseudo-forces used in popular computer programs used to model properties of atoms, molecules, and proteins. By beginning with the basics and then diving deeper into the topic, this book aims to familiarize the reader with electrostatic forces at the atomic and molecular level.
Since the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries — the chiral multifold fermions — that can be understood as a higher-spin generalization of Weyl fermions. This work provides a complete description of all chiral multifold fermions, studying their topological properties and the k·p models describing them. We compute the optical conductivity of all chiral multifold fermions and establish their optical selection rules. We find that the activation frequencies are different for each type of multifold fermion, thus constituting an experimental fingerprint for each type of multifold fermion. Building on the theoretical results obtained in the first part of our analysis, we study two chiral multifold semimetals: RhSi and CoSi. We analyze the experimental results with k·p and tight-binding models based on the crystal symmetries of the material. We trace back the features observed in the experimental optical conductivity to the existence of multifold fermions near the Fermi level and estimate the chemical potential and the scattering lifetime in both materials. Finally, we provide an overview of second-order optical responses and study the second-harmonic generation of RhSi. We find a sizeable second-harmonic response in the low-energy regime associated with optical transitions between topological bands. However, this regime is extremely challenging to access with the current experimental techniques. We conclude by providing an overview of the main results, highlighting potential avenues to further research on chiral multifold semimetals and the future of optical responses as experimental probes to characterize topological phases.
Electron storage rings play a crucial role in many areas of modern scientific research. In light sources, they provide intense beams of x-rays that can be used to understand the structure and behavior of materials at the atomic scale, with applications to medicine, the life sciences, condensed matter physics, engineering, and technology. In particle colliders, electron storage rings allow experiments that probe the laws of nature at the most fundamental level. Understanding and controlling the behavior of the beams of particles in storage rings is essential for the design, construction, and operation of light sources and colliders aimed at reaching increasingly demanding performance specifications. Introduction to Beam Dynamics in High-Energy Electron Storage Rings describes the physics of particle behavior in these machines. Starting with an outline of the history, uses, and structure of electron storage rings, the book develops the foundations of beam dynamics, covering particle motion in the components used to guide and focus the beams, the effects of synchrotron radiation, and the impact of interactions between the particles in the beams. The aim is to emphasize the physics behind key phenomena, keeping mathematical derivations to a minimum: numerous references are provided for those interested in learning more. The text includes discussion of issues relevant to machine design and operation and concludes with a brief discussion of some more advanced topics, relevant in some special situations, and a glimpse of current research aiming to develop the "ultimate" storage rings.
The third edition of the defining text for the graduate-level course in Electricity and Magnetism has finally arrived! It has been 37 years since the first edition and 24 since the second. The new edition addresses the changes in emphasis and applications that have occurred in the field, without any significant increase in length.
This book demonstrates Microsoft EXCEL-based Fourier transform of selected physics examples. Spectral density of the auto-regression process is also described in relation to Fourier transform. Rather than offering rigorous mathematics, readers will "try and feel" Fourier transform for themselves through the examples. Readers can also acquire and analyze their own data following the step-by-step procedure explained in this book. A hands-on acoustic spectral analysis can be one of the ideal long-term student projects.
This volume presents lectures given at the Wisła 20-21 Winter School and Workshop: Groups, Invariants, Integrals, and Mathematical Physics, organized by the Baltic Institute of Mathematics. The lectures were dedicated to differential invariants – with a focus on Lie groups, pseudogroups, and their orbit spaces – and Poisson structures in algebra and geometry and are included here as lecture notes comprising the first two chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and category theory. Specific topics covered include: The multisymplectic and variational nature of Monge-Ampère equations in dimension four Integrability of fifth-order equations admitting a Lie symmetry algebra Applications of the van Kampen theorem for groupoids to computation of homotopy types of striped surfaces A geometric framework to compare classical systems of PDEs in the category of smooth manifolds Groups, Invariants, Integrals, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and category theory is assumed.
Structure and Intrinsic Disorder in Enzymology offers a direct, yet comprehensive presentation of the fundamental concepts, characteristics and functions of intrinsically disordered enzymes, along with valuable notes and technical insights powering new research in this emerging field. Here, more than twenty international experts examine protein flexibility and cryo-enzymology, hierarchies of intrinsic disorder, methods for measurement of disorder in proteins, bioinformatics tools for predictions of structure, disorder and function, protein promiscuity, protein moonlighting, globular enzymes, intrinsic disorder and allosteric regulation, protein crowding, intrinsic disorder in post-translational, and much more. Chapters also review methods for study, as well as evolving technology to support new research across academic, industrial and pharmaceutical labs.
Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a convention or conundrum, an answer or question. Authors have run the gamut from hand waving to heavy handed in hopes to dispel the common beliefs about quantum mechanics, but perhaps they continue to promulgate the stigma. The focus of this particular effort is to give the reader an introduction, if not at least an appreciation, of the role that linear algebra techniques play in the practical application of quantum mechanical methods. It interlaces aspects of the classical and quantum picture, including a number of both worked and parallel applications. Students with no prior experience in quantum mechanics, motivated graduate students, or researchers in other areas attempting to gain some introduction to quantum theory will find particular interest in this book.
Data Assimilation for the Geosciences: From Theory to Application, Second Edition brings together all of the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place. It includes practical exercises enabling readers to apply theory in both a theoretical formulation as well as teach them how to code the theory with toy problems to verify their understanding. It also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to land surface, the atmosphere, ocean and other geophysical situations. The second edition of Data Assimilation for the Geosciences has been revised with up to date research that is going on in data assimilation, as well as how to apply the techniques. The new edition features an introduction of how machine learning and artificial intelligence are interfacing and aiding data assimilation. In addition to appealing to students and researchers across the geosciences, this now also appeals to new students and scientists in the field of data assimilation as it will now have even more information on the techniques, research, and applications, consolidated into one source.
While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at a level accessible to graduate students starting a PhD in nuclear physics. Halo nuclei are an exotic form of atomic nuclei that contain typically many more neutrons than stable isotopes of those elements. To give you a famous example, an atom of the element lithium has three electrons orbiting a nucleus with three protons and, usually, either 3 or 4 neutrons. The difference in the number of neutrons gives us two different isotopes of lithium, Li6 and Li7. But if you keep adding neutrons to the nucleus you will eventually reach Li11, with still 3 protons (that means it's lithium) but with 8 neutrons. This nucleus is so neutron-rich that the last two are very weakly bound to the rest of the nucleus (a Li9 core). What happens is a quantum mechanical effect: the two outer neutrons float around beyond the rest of the nuclear core at a distance that is beyond the range of the force that is holding them to the core. This is utterly counterintuitive. It means the nucleus looks like a core plus extended diffuse cloud of neutron probability: the halo. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.
|
![]() ![]() You may like...
Innovations in Computer Science and…
Harvinder Singh Saini, Rishi Sayal, …
Hardcover
R5,229
Discovery Miles 52 290
Securing Mobile Devices and Technology
Kutub Thakur, Al-Sakib Khan Pathan
Hardcover
R4,324
Discovery Miles 43 240
Design and Optimization of Sensors and…
Vinod Kumar Singh, Ratnesh Tiwari, …
Hardcover
R6,390
Discovery Miles 63 900
Virtual and Mobile Healthcare…
Information Reso Management Association
Hardcover
R11,844
Discovery Miles 118 440
Mobile and Sensor-Based Technologies in…
Oytun Soezudogru, Bulent Akkaya
Hardcover
R5,309
Discovery Miles 53 090
Design, Analysis and Applications of…
Ahmad Taher Azar, Nashwa Ahmad Kamal
Paperback
R3,924
Discovery Miles 39 240
Confident Coding - Learn How to Code and…
Rob Percival, Darren Woods
Paperback
|