![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics
Developments and Applications for ECG Signal Processing: Modeling, Segmentation, and Pattern Recognition covers reliable techniques for ECG signal processing and their potential to significantly increase the applicability of ECG use in diagnosis. This book details a wide range of challenges in the processes of acquisition, preprocessing, segmentation, mathematical modelling and pattern recognition in ECG signals, presenting practical and robust solutions based on digital signal processing techniques. Users will find this to be a comprehensive resource that contributes to research on the automatic analysis of ECG signals and extends resources relating to rapid and accurate diagnoses, particularly for long-term signals. Chapters cover classical and modern features surrounding f ECG signals, ECG signal acquisition systems, techniques for noise suppression for ECG signal processing, a delineation of the QRS complex, mathematical modelling of T- and P-waves, and the automatic classification of heartbeats.
This book begins with the history and fundamentals of optical fiber communications. Then, briefly introduces existing optical multiplexing techniques and finally focuses on spatial domain multiplexing (SDM), aka space division multiplexing, and orbital angular momentum of photon based multiplexing. These are two emerging multiplexing techniques that have added two new degrees of photon freedom to optical fibers.
Introduction to Plasma Physics presents the latest on plasma physics. Although plasmas are not very present in our immediate environment, there are still universal phenomena that we encounter, i.e., electric shocks and galactic jets. This book presents, in parallel, the basics of plasma theory and a number of applications to laboratory plasmas or natural plasmas. It provides a fresh look at concepts already addressed in other disciplines, such as pressure and temperature. In addition, the information provided helps us understand the links between fluid theories, such as MHD and the kinetic theory of these media, especially in wave propagation.
The transport of electric charge through most materials is well described in terms of their electronic band structure. The present book deals with two cases where the charge transport in a solid is not described by the simple band structure picture of the solid. These cases are related to the phenomena of the quantum Hall effect and superconductivity. Part I of this book deals with the quantum Hall effect, which is a consequence of the behavior of electrons in solids when they are constrained to move in two dimensions. Part II of the present volume describes the behavior of superconductors, where electrons are bound together in Cooper pairs and travel through a material without resistance.
Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more.
Science is at a cross-roads. For several decades, the Standard Model of particle physics has managed to fit vast amounts of particle scattering data remarkably well, but many questions remain. During those decades, some sophisticated theoretical hypotheses such as string theory, quantum gravity, and quantum cosmology have been proposed and studied intensively, in an effort to break the log-jam of the Standard Model. None of those hypotheses have succeeded to date. Of greater concern is the increasing tendency by some practitioners in those fields to downplay the empirical principles of science.In response, this book is a restatement of those principles, covering numerous aspects of observation. A particular focus is on contextuality versus realism, the two fundamentally contrasting ideologies that underpin modern physics.
Basic Physics of Nanoscience: Traditional Approaches and New Aspects at the Ultimate Level deals with the description of properties at the Nano level and self-organizing quantum processes of Nano systems. The book presents the state of the art as well as theoretical discussions of future developments, beginning with simple Nano systems' sensitivity to small variations in interaction potential compared to bulk cases, and continuing with a discussion of the structure and dynamics of Nano systems as a function of temperature. Additionally, the book analyzes self-organizing quantum processes-which are essential in the design of new Nano systems-in detail, and explores new aspects related to the quantum theoretical nature of time, leading to an expansion of the basic laws through nanotechnology. Finally, the book explores the effect of nanotechnological manipulations of brain functions and the need for the development of reliable models for the matter-mind complex. This innovative approach to understanding Nano systems makes Basic Physics of Nanoscience a vital resource for advanced students and researchers of physics, materials science, and neuroscience.
Molecularly Imprinted Polymers (MIPs): Commercialization Prospects guides the reader through the various steps in the conceptualization, design, preparation and innovative applications of molecularly imprinted polymers while also demystifying the challenges relating to commercialization. Sections cover molecularly imprinted polymers, design, modeling, compositions and material selection. Other sections describe novel methods and discuss the challenges relating to the use of molecularly imprinted polymers in specific application areas. The final chapters of the book explore the current situation in terms of patents and commercialized materials based on MIPs, as well as prospects and possible opportunities. This is a valuable resource for all those with an interest in the development, application, and commercialization of molecularly imprinted polymers, including researchers and advanced students in polymer science, polymer chemistry, nanotechnology, materials science, chemical engineering, and biomedicine, as well as engineers, scientists and R&D professionals with an interest in MIPs for advanced applications.
The Nutritional Biochemistry of Chromium(III), Second Edition, reviews the fields of chromium biochemistry and nutrition and how they have dramatically changed in the last decade. Editor John Vincent has lead much of the research that has resulted in new discoveries and reversals of previously held beliefs, such as health concerns surrounding the toxicity of chromium(III). New sections include a review of new evidence showing why chromium may not be an essential element, why national recommendations may need updating, and new data on the use of chromium supplementation in animal feeds. Discussions on the controversial topic of the role of chromium(III) at the molecular level in insulin signaling and information on cell cultures and in vitro assays of chromium toxicity are also covered.
Coastal Wetlands, Second Edition: An Integrated and Ecosystem Approach provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide. As coastal wetlands are under a great deal of pressure from the dual forces of rising sea levels and the intervention of human populations, both along the estuary and in the river catchment, this book covers important issues, such as the destruction or degradation of wetlands from land reclamation and infrastructures, impacts from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations.
Primitive Meteorites and Asteroids: Physical, Chemical, and Spectroscopic Observations Paving the Way to Exploration covers the physical, chemical and spectroscopic aspects of asteroids, providing important data and research on carbonaceous chondrites and primitive meteorites. This information is crucial to the success of missions to parent bodies, thus contributing to an understanding of the early solar system. The book offers an interdisciplinary perspective relevant to many fields of planetary science, as well as cosmochemistry, planetary astronomy, astrobiology, geology and space engineering. Including contributions from planetary and missions scientists worldwide, the book collects the fundamental knowledge and cutting-edge research on carbonaceous chondrites and their parent bodies into one accessible resource, thus contributing to the future of space exploration.
Phenomena of Optical Metamaterials provides an overview of phenomena enabled by artificial and designed metamaterials and their application for photonic devices. The book explores the study of active metamaterials with tunable and switchable properties and novel functionalities, such as the control of spontaneous emission and enhancement. Topics addressed cover theory, modelling and design, applications in practical devices, fabrication, characterization, and measurement, thus helping readers understand and develop new artificial, functional materials.
In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.
Handbook of Natural Polymers, Volume One: Sources, Synthesis, and Characterization is a comprehensive resource covering extraction and processing methods for polymers from natural sources, with an emphasis on the latest advances. Sections cover the current state-of-the-art, challenges and opportunities in natural polymers. Following sections cover extraction, synthesis and characterization methods organized by polymer type. Along with broad chapters discussing approaches to starch-based and polysaccharide-based polymers, dedicated chapters offer in-depth information on nanocellulose, chitin and chitosan, gluten, alginate, natural rubber, gelatin, pectin, lignin, keratin, gutta percha, shellac, silk, wood, casein, albumin, collagen, hemicellulose, polyhydroxyalkanoates, zein, soya protein, and gum. Final chapters explore other key themes, including filler interactions and properties in natural polymer-based composites, biocompatibility and cytotoxicity, and biodegradability, life cycle, and recycling. Throughout the book, information is supported by data, and guidance is offered regarding potential scale-up and industry factors.
Physics Problem-Solving Techniques for Understanding and Success in First Year Mechanics: A Structured Approach for Scientists and Engineers addresses a topic generally skipped in first-year textbooks: how conceptual understanding of the laws of physics are applied to problem-solving in a systematic way, as experts do. The book was written to empower students with the knowledge and skills necessary for them to have confidence solving any problem in mechanics, and later, to those in related disciplines. The opening chapter is on the topic of word problems featuring examples from 1D kinematics. Chapters 2 through 6 mirror the same order found in most standard first-year physics textbooks: Newton's Second Law, Work-Kinetic Energy Theorem, Conservation of Energy, Conservation of Momentum, and Rotational Dynamics and Angular Momentum. An appendix contains a review of unit analysis and unit conversion. Each chapter begins by reviewing a principle of mechanics in the context of its application to problem-solving, ending with a summary of the problem-solving steps for that principle. The second half of each chapter has example solutions in a two-column format with the solution steps on the left and annotations on the right, describing the steps so that students learn how the same steps are applied to all problems using the same principle. |
You may like...
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R7,980
Discovery Miles 79 800
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
The Oxford Handbook of Sound Studies
Trevor Pinch, Karin Bijsterveld
Hardcover
R5,427
Discovery Miles 54 270
Everyday Applied Geophysics 2…
Nicolas Florsch, Frederic Muhlach, …
Hardcover
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,573
Discovery Miles 15 730
Nonequilibrium Thermodynamics…
Yasar Demirel, Vincent Gerbaud
Paperback
|