![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
Biophotonic diagnostics/biomedical spectroscopy can revolutionise the medical environment by providing a responsive and objective diagnostic environment. This book aims to explain the fundamentals of the physical techniques used combined with the particular requirements of analysing medical/clinical samples as a resource for any interested party. In addition, it will show the potential of this field for the future of medical science and act as a driver for translation across many different biological problems/questions.
Electromagnetic homogenization is the process of estimating the effective electromagnetic properties of composite materials in the long-wavelength regime, wherein the length scales of nonhomogeneities are much smaller than the wavelengths involved. This is a bird's-eye view of currently available homogenization formalisms for particulate composite materials. It presents analytical methods only, with focus on the general settings of anisotropy and bianisotropy. The authors largely concentrate on 'effective' materials as opposed to 'equivalent' materials, and emphasize the fundamental (but sometimes overlooked) differences between these two categories of homogenized composite materials. The properties of an 'effective' material represents those of its composite material, regardless of the geometry and dimensions of the bulk materials and regardless of the orientations and polarization states of the illuminating electromagnetic fields. In contrast, the properties of 'equivalent' materials only represent those of their corresponding composite materials under certain restrictive circumstances.
As technology advances, education has expanded from the classroom into other formats including online delivery, flipped classrooms and hybrid delivery. Congruent with these is the need for alternative formats for laboratory experiences. This explosion in technology has also placed in the hands of a majority of students a sensor suite tucked neatly into their smartphones or smart tablets. The popularity of these devices provides a new avenue for the non-traditional kinematic lab experience. This book addresses this issue by providing 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than $8 per student, per lab, excluding the smartphone and laptop.
Statistical Thermodynamics of Semiconductor Alloys is the consideration of thermodynamic properties and characteristics of crystalline semiconductor alloys by the methods of statistical thermodynamics. The topics presented in this book make it possible to solve such problems as calculation of a miscibility gap, a spinodal decomposition range, a short-range order, deformations of crystal structure, and description of the order-disorder transitions. Semiconductor alloys, including doped elemental semiconductors are the basic materials of solid-state electronics. Their structural stability and other characteristics are key to determining the reliability and lifetime of devices, making the investigation of stability conditions an important part of semiconductor physics, materials science, and engineering. This book is a guide to predicting and studying the thermodynamic properties and characteristics of the basic materials of solid-state electronics.
For courses in introductory calculus-based physics. For a strong, deep, and fundamentally simple understanding of physics Eric Mazur's groundbreaking Principles and Practice of Physics establishes an understanding of physics that is thorough and accessible. Mazur's unique pedagogy and popular peer-to-peer instruction techniques incorporate insights supported by physics education research (PER) to help students develop a true conceptual understanding alongside the quantitative skills needed in the course. The material emphasizes core unifying ideas with the first half of each chapter teaching the ideas using words and images - not mathematics. The second half of each chapter casts the ideas into quantitative and symbolic form. The 2nd Edition integrates key features from the Practice volume into the Principles volume and provides all Practice volume content in Mastering Physics. The new edition provides new prelecture material that better prepares students to come to class ready to participate and supports instructors in building active and relevant lectures. Now available with Modified Mastering Physics By combining trusted author content with digital tools and a flexible platform, Mastering personalizes the learning experience and improves results for each student.
Reliability, Risk and Safety: Back to the Future covers topics on reliability, risk and safety issues, including risk and reliability analysis methods, maintenance optimization, human factors, and risk management. The application areas range from nuclear engineering, oil and gas industry, electrical and civil engineering to information technology and communication, security, transportation, health and medicine or critical infrastructures. Significant attention is paid to societal factors influencing the use of reliability and risk assessment methods, and to combinatorial analysis, which has found its way into the analysis of probabilities and risk, from which quantified risk analysis developed. Integral demonstrations of the use of risk analysis and safety assessment are provided in many practical applications concerning major technological systems and structures. Reliability, Risk and Safety: Back to the Future will be of interest to academics and engineers interested in nuclear engineering, oil and gas engineering, electrical engineering, civil engineering, information technology, communication, and infrastructure.
It began with plutonium, the first element ever manufactured in quantity by humans. Fearing that the Germans would be the first to weaponise the atom, the United States marshalled brilliant minds and seemingly inexhaustible bodies to find a way to create a nuclear chain reaction of inconceivable explosive power. In a matter of months, the Hanford nuclear facility was built to produce the enigmatic and deadly new material that would fuel atomic bombs. In the desert of eastern Washington State, far from prying eyes, scientists Glenn Seaborg, Enrico Fermi and thousands of others-the physicists, engineers, labourers and support staff at the facility-manufactured plutonium for the bomb dropped on Nagasaki, and for the bombs in the current American nuclear arsenal, enabling the construction of weapons with the potential to end human civilisation. With his characteristic blend of scientific clarity and storytelling, Steve Olson asks why Hanford has been largely overlooked in histories of the Manhattan Project and the Cold War. Olson, who grew up just twenty miles from Hanford's B Reactor, recounts how a small Washington town played host to some of the most influential scientists and engineers in American history as they sought to create the substance at the core of the most destructive weapons ever created. The Apocalypse Factory offers a new generation this dramatic story of human achievement and ultimately, of lethal hubris. *2020 marks the 75th anniversary of the United States' detonation of nuclear weapons over the Japanese cities of Hiroshima and Nagasaki on 6 and 9 August 1945.
Synchrotron radiation is the name given to the radiation which occurs when charged particles are accelerated in a curved path or orbit. Classically, any charged particle which moves in a curved path or is accelerated in a straight-line path will emit electromagnetic radiation. Various names are given to this radiation in different contexts. Thus circular particle accelerators are called synchrotrons, this is where charged particles are accelerated to very high speeds and the radiation is referred to as synchrotron radiation.Suitable for a summer short course or one term lecture series this text introduces the subject, starting with some historical background then covering basic concepts such as flux, intensity, brilliance, emittance and Liouville's theorem. The book then covers the properties of synchrotron radiation, insertion devices, beamlines and monochromators before finishing with an introduction to free electron lasers and an overview of the most common techniques and applications of this technology.
This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called ""science anxiety."" Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the United States. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.
Industrial: Industrial Protein Xray Crystallography: An Overview (J.D. Oliver) Recent Advances in the Use of Synchrotron Radiation for Protein Crystallography (R. Sweet). The Crystal Structures of Some New Forms of Aluminum Fluoride as Determined from Their Synchrotron Powder Diffraction Patterns (R.L. Harlow et al.). Synchrotron Radiationbased Research at the Dow Chemical Company (R.A. Bubeck et al.). Chemical: The Chemical Dynamics Beamline at the Advanced Light Source (A.G. Suits et al.). High Resolution Photoionization and Excitation Using Third Generation Radiation Sources (N. Berrah et al.). Recent Advances toward a Structural Model for the Photosynthetic Oxygenevolving Manganes Cluster (M.J. Latimer et al.). Cesium XAFS Studies of Solution Phase Csionophore Complexation (K.M. Kemner et al.). Materials Science: Studies of Magnetic Material with Circular Polarized Soft Xrays (V. Chakarian et al.). Resonant Photoemission in Polymers (J. Kikuma et al.). Characterization of the Complexation of Uranyl Ions with Humic Acids by Xray Absorption Spectroscopy (T. Reich et al.). Spectroscopic Studies of Lanthanide Coordination in Crystalline and Amorphous Phosphates (L.R. Morss et al.). 5 additional articles. Index.
Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Solid State Physics provides the latest information on the branch of physics that is primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics.
This book focuses on the emergence of creative ideas from cognitive and social dynamics. In particular, it presents data, models, and analytical methods grounded in a network dynamics approach. It has long been hypothesized that innovation arises from a recombination of older ideas and concepts, but this has been studied primarily at an abstract level. In this book, we consider the networks underlying innovation - from the brain networks supporting semantic cognition to human networks such as brainstorming groups or individuals interacting through social networks - and relate the emergence of ideas to the structure and dynamics of these networks. Methods described include experimental studies with human participants, mathematical evaluation of novelty from group brainstorming experiments, neurodynamical modeling of conceptual combination, and multi-agent modeling of collective creativity. The main distinctive features of this book are the breadth of perspectives considered, the integration of experiments with theory, and a focus on the combinatorial emergence of ideas.
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincare sphere on polarization optics.
Combined Quantum Mechanical and Molecular Mechanical Modelling of Biomolecular Interactions continues the tradition of the Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins, with each thematically organized volume guest edited by leading experts in a broad range of protein-related topics. |
![]() ![]() You may like...
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Foams - Structure and Dynamics
Isabelle Cantat, Sylvie Cohen-Addad, …
Hardcover
R2,492
Discovery Miles 24 920
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,600
Discovery Miles 46 000
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,451
Discovery Miles 54 510
|