![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics
The book is devoted to several topical questions in modern mathematical and theoretical physics, astrophysics, geophysics, and cosmology that remain unsolved within the framework of the standard approaches. To them, one can attribute unexplained properties of the magnetic fields of stars and planets, puzzles of the Earth's atmosphere, the phenomenon of ball lightning, the problem of a qualitative description for nuclear forces and their well-known property of saturation, enigmatic properties of spiral galaxies, the problem of the cosmological singularity, mysteries of the dark matter and dark energy, amongst others. To find theoretical ways for understanding such phenomena, new nonlinear generalizations of the classical field theories and advanced methods to solve nonlinear equations arising in them are studied and presented in this book.
The author is ready to assert that practically none of the readers of this book will ever happen to deal with large doses of radiation. But the author, without a shadow of a doubt, claims that any readers of this book, regardless of gender, age, financial situation, type of professional activity, and habits, are actually exposed to low doses of radiation throughout their life. This book is devoted to the effect of small doses on the body. To understand the basic effects of radiation on humans, the book contains the necessary information from an atomic, molecular and nuclear physics, as well as from biochemistry and biology. Special attention is paid to the issues that are either not considered or discussed very briefly in existing literature. Examples include the ionization of inner atomic shells that play an essential role in radiological processes, and the questions of transformation of the energy of ionizing radiation in matter. The benefits of ionizing radiation to mankind is reflected in a wide range of radiation technologies used in science, industry, agriculture, culture, art, forensics, and, what is the most important application, medicine. Radiation: Fundamentals, Applications, Risks and Safety provides information on the use of radiation in modern life, its usefulness and indispensability. Experiments on the effects of small doses on bacteria, fungi, algae, insects, plants and animals are described. Human medical experiments are inhuman and ethically flawed. However, during the familiarity of mankind with ionizing radiation, a large number of population groups were subject to accumulation, exposed to radiation at doses of small but exceeding the natural background radiation. This book analyzes existing, real-life radiation results from survivors of Hiroshima and Nagasaki, Chernobyl and Fukushima, and examines studies of radiation effect on patients, radiologists, crews of long-distant flights and astronauts, on miners of uranium copies, on workers of nuclear industry and on militaries, exposed to ionizing radiation on a professional basis, and on the population of the various countries receiving environmental exposure. The author hopes that this book can mitigate the impact of radiation phobia, which prevails in the public consciousness over the last half century.
Semiconductors and Modern Electronics is a brief introduction to the physics behind semiconductor technologies. Chuck Winrich, a physics professor at Babson College, explores the topic of semiconductors from a qualitative approach to understanding the theories and models used to explain semiconductor devices. Applications of semiconductors are explored and understood through the models developed in the book. The qualitative approach in this book is intended to bring the advanced ideas behind semiconductors to the broader audience of students who will not major in physics. Much of the inspiration for this book comes from Dr. Winrich's experience teaching a general electronics course to students majoring in business. The goal of that class, and this book, is to bring forward the science behind semiconductors, and then to look at how that science affects the lives of people.
It was not until 1971 that the authority for defining scientific units, the General Conference of Weights and Measures got around to defining the unit that is the basis of chemistry (the mole, or the quantity of something). Yet for all this tardiness in putting the chemical sciences on a sound quantitative basis, chemistry is an old and venerable subject and one naturally asks the question, why? Well, the truth is that up until the mid-1920s, many physicists did not believe in the reality of molecules. Indeed, it was not until after the physics community had accepted Ernest Rutherford's 1913 solar-system-like model of the atom, and the quantum mechanical model of the coupling of electron spins in atoms that physicists started to take seriously the necessity of explaining the chemical changes that chemists had been observing, investigating and recording since the days of the alchemists.
The world of single-board computing puts powerful coding tools in the palm of your hand. The portable Raspberry Pi computing platform with the power of Linux yields an exciting exploratory tool for beginning scientific computing. Science and Computing with Raspberry Pi takes the enterprising researcher, student, or hobbyist through explorations in a variety of computing exercises with the physical sciences. The book has tutorials and exercises for a wide range of scientific computing problems while guiding the user through: Configuring your Raspberry Pi and Linux operating system Understanding the software requirements while using the Pi for scientific computing Computing exercises in physics, astronomy, chaos theory, and machine learning
Demonstrating many fundamental concepts of physics and engineering through the working principles of popular science toys is inexpensive, quickly reaching the senses and inspiring a better learning. The systematic way of setting theoretical model equations for the toys provides a remarkable experience in constructing model equations for physical and engineering systems.Given that most science toys are based on the principles of physics, and to cater to the needs of graduate and master-level programme students in physics and engineering, the present book covers more than 40 wide ranging popular toys. For each toy various features are presented including history, construction, working principle, theoretical model, a solved problem and 5-10 exercises.A course on The Physics of Toys can be designed based on the proposed book to be taught as a full course at graduate and master-level and even to students who have never been exposed to physics. Further, the features of the toys covered in this book can be used to illustrate various concepts and principles in different branches of physics and engineering.
Developments and Applications for ECG Signal Processing: Modeling, Segmentation, and Pattern Recognition covers reliable techniques for ECG signal processing and their potential to significantly increase the applicability of ECG use in diagnosis. This book details a wide range of challenges in the processes of acquisition, preprocessing, segmentation, mathematical modelling and pattern recognition in ECG signals, presenting practical and robust solutions based on digital signal processing techniques. Users will find this to be a comprehensive resource that contributes to research on the automatic analysis of ECG signals and extends resources relating to rapid and accurate diagnoses, particularly for long-term signals. Chapters cover classical and modern features surrounding f ECG signals, ECG signal acquisition systems, techniques for noise suppression for ECG signal processing, a delineation of the QRS complex, mathematical modelling of T- and P-waves, and the automatic classification of heartbeats.
This book begins with the history and fundamentals of optical fiber communications. Then, briefly introduces existing optical multiplexing techniques and finally focuses on spatial domain multiplexing (SDM), aka space division multiplexing, and orbital angular momentum of photon based multiplexing. These are two emerging multiplexing techniques that have added two new degrees of photon freedom to optical fibers.
Introduction to Plasma Physics presents the latest on plasma physics. Although plasmas are not very present in our immediate environment, there are still universal phenomena that we encounter, i.e., electric shocks and galactic jets. This book presents, in parallel, the basics of plasma theory and a number of applications to laboratory plasmas or natural plasmas. It provides a fresh look at concepts already addressed in other disciplines, such as pressure and temperature. In addition, the information provided helps us understand the links between fluid theories, such as MHD and the kinetic theory of these media, especially in wave propagation.
The transport of electric charge through most materials is well described in terms of their electronic band structure. The present book deals with two cases where the charge transport in a solid is not described by the simple band structure picture of the solid. These cases are related to the phenomena of the quantum Hall effect and superconductivity. Part I of this book deals with the quantum Hall effect, which is a consequence of the behavior of electrons in solids when they are constrained to move in two dimensions. Part II of the present volume describes the behavior of superconductors, where electrons are bound together in Cooper pairs and travel through a material without resistance.
Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more.
Science is at a cross-roads. For several decades, the Standard Model of particle physics has managed to fit vast amounts of particle scattering data remarkably well, but many questions remain. During those decades, some sophisticated theoretical hypotheses such as string theory, quantum gravity, and quantum cosmology have been proposed and studied intensively, in an effort to break the log-jam of the Standard Model. None of those hypotheses have succeeded to date. Of greater concern is the increasing tendency by some practitioners in those fields to downplay the empirical principles of science.In response, this book is a restatement of those principles, covering numerous aspects of observation. A particular focus is on contextuality versus realism, the two fundamentally contrasting ideologies that underpin modern physics.
Basic Physics of Nanoscience: Traditional Approaches and New Aspects at the Ultimate Level deals with the description of properties at the Nano level and self-organizing quantum processes of Nano systems. The book presents the state of the art as well as theoretical discussions of future developments, beginning with simple Nano systems' sensitivity to small variations in interaction potential compared to bulk cases, and continuing with a discussion of the structure and dynamics of Nano systems as a function of temperature. Additionally, the book analyzes self-organizing quantum processes-which are essential in the design of new Nano systems-in detail, and explores new aspects related to the quantum theoretical nature of time, leading to an expansion of the basic laws through nanotechnology. Finally, the book explores the effect of nanotechnological manipulations of brain functions and the need for the development of reliable models for the matter-mind complex. This innovative approach to understanding Nano systems makes Basic Physics of Nanoscience a vital resource for advanced students and researchers of physics, materials science, and neuroscience.
Molecularly Imprinted Polymers (MIPs): Commercialization Prospects guides the reader through the various steps in the conceptualization, design, preparation and innovative applications of molecularly imprinted polymers while also demystifying the challenges relating to commercialization. Sections cover molecularly imprinted polymers, design, modeling, compositions and material selection. Other sections describe novel methods and discuss the challenges relating to the use of molecularly imprinted polymers in specific application areas. The final chapters of the book explore the current situation in terms of patents and commercialized materials based on MIPs, as well as prospects and possible opportunities. This is a valuable resource for all those with an interest in the development, application, and commercialization of molecularly imprinted polymers, including researchers and advanced students in polymer science, polymer chemistry, nanotechnology, materials science, chemical engineering, and biomedicine, as well as engineers, scientists and R&D professionals with an interest in MIPs for advanced applications.
The Nutritional Biochemistry of Chromium(III), Second Edition, reviews the fields of chromium biochemistry and nutrition and how they have dramatically changed in the last decade. Editor John Vincent has lead much of the research that has resulted in new discoveries and reversals of previously held beliefs, such as health concerns surrounding the toxicity of chromium(III). New sections include a review of new evidence showing why chromium may not be an essential element, why national recommendations may need updating, and new data on the use of chromium supplementation in animal feeds. Discussions on the controversial topic of the role of chromium(III) at the molecular level in insulin signaling and information on cell cultures and in vitro assays of chromium toxicity are also covered.
Acoustics: Sound Fields, Transducers and Vibration, Second Edition guides readers through the basics of sound fields, the laws governing sound generation, radiation, and propagation, and general terminology. Specific sections cover microphones (electromagnetic, electrostatic, and ribbon), earphones, and horns, loudspeaker enclosures, baffles and transmission lines, miniature applications (e.g. MEMS microphones and micro speakers in tablets and smart phones), sound in enclosures of all sizes, such as school rooms, offices, auditoriums and living rooms, and fluid-structure interaction. Numerical examples and summary charts are given throughout the text to make the material easily applicable to practical design. New to this edition: A chapter on electrostatic loudspeakers A chapter on vibrating surfaces (membranes, plates, and shells) Readers will find this to be a valuable resource for experimenters, acoustical consultants, and to those who anticipate being engineering designers of audio equipment. It will serve as both a text for students in engineering departments and as a valuable reference for practicing engineers.
Coastal Wetlands, Second Edition: An Integrated and Ecosystem Approach provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide. As coastal wetlands are under a great deal of pressure from the dual forces of rising sea levels and the intervention of human populations, both along the estuary and in the river catchment, this book covers important issues, such as the destruction or degradation of wetlands from land reclamation and infrastructures, impacts from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. |
You may like...
Synergistic Interaction of Big Data with…
Indranath Chatterjee, Rajanish K. Kamat, …
Hardcover
R4,778
Discovery Miles 47 780
New Developments in Statistical…
Zhezhen Jin, Mengling Liu, …
Hardcover
R4,614
Discovery Miles 46 140
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Basic Elements of Computational…
Wolfgang Karl Hardle, Ostap Okhrin, …
Hardcover
R3,109
Discovery Miles 31 090
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Project Management in Extreme Situations…
Monique Aubry, Pascal Lievre
Paperback
R1,451
Discovery Miles 14 510
|