|
|
Books > Science & Mathematics > Physics
This book and its prequel (Theories of Matter, Space, and Time:
Classical Theories) grew out of courses that are taught by the
authors on the undergraduate degree program in physics at
Southampton University, UK. The authors aim to guide the full MPhys
undergraduate cohort through some of the trickier areas of
theoretical physics that undergraduates are expected to master. To
move beyond the initial courses in classical mechanics, special
relativity, electromagnetism and quantum theory to more
sophisticated views of these subjects and their interdependence.
This approach keeps the analysis as concise and physical as
possible whilst revealing the key elegance in each subject
discussed.This second book of the pair looks at ideas to the arena
of Quantum Mechanics. First quickly reviewing the basics of quantum
mechanics which should be familiar to the reader from a first
course, it then links the Schrodinger equation to the Principle of
Least Action introducing Feynman's path integral methods. Next, it
presents the relativistic wave equations of Klein, Gordon and
Dirac. Finally, Maxwell's equations of electromagnetism are
converted to a wave equation for photons and make contact with
Quantum Electrodynamics (QED) at a first quantized level. Between
the two volumes the authors hope to move a student's understanding
from their first courses to a place where they are ready to embark
on graduate level courses on quantum field theory.
This book provides a concise introduction to both the special
theory of relativity and the general theory of relativity. The
format is chosen to provide the basis for a single semester course
which can take the students all the way from the foundations of
special relativity to the core results of general relativity: the
Einstein equation and the equations of motion for particles and
light in curved spacetime. To facilitate access to the topics of
special and general relativity for science and engineering students
without prior training in relativity or geometry, the relevant
geometric notions are also introduced and developed from the ground
up. Students in physics, mathematics or engineering with an
interest to learn Einstein's theories of relativity should be able
to use this book already in the second semester of their third
year. The book could also be used as the basis of a graduate level
introduction to relativity for students who did not learn
relativity as part of their undergraduate training.
This book is a short introduction to classical field theory, most
suitable for undergraduate students who have had at least
intermediate-level courses in electromagnetism and classical
mechanics. The main theme of the book is showcasing role of fields
in mediating action-at-a-distance interactions. Suitable technical
machinery is developed to explore at least some aspect of each of
the four known fundamental forces in nature. Beginning with the
physically-motivated introduction to field theory, the text covers
the relativistic formulation of electromagnetism in great detail so
that aspects of gravity and the nuclear interaction not usually
encountered at the undergraduate level can be covered by using
analogies with familiar electromagentism. Special topics such as
the behavior of gravity in extra, compactified dimensions, magnetic
monopoles and electromagnetic duality, and the Higgs mechanism are
also briefly considered.
This book provides a set of theoretical and numerical tools useful
for the study of wave propagation in metamaterials and photonic
crystals. While concentrating on electromagnetic waves, most of the
material can be used for acoustic (or quantum) waves. For each
presented numerical method, numerical code written in MATLAB (R) is
presented. The codes are limited to 2D problems and can be easily
translated in Python or Scilab, and used directly with Octave as
well.
Nonlinear Time Series Analysis with R provides a practical guide to
emerging empirical techniques allowing practitioners to diagnose
whether highly fluctuating and random appearing data are most
likely driven by random or deterministic dynamic forces. It joins
the chorus of voices recommending 'getting to know your data' as an
essential preliminary evidentiary step in modelling. Time series
are often highly fluctuating with a random appearance. Observed
volatility is commonly attributed to exogenous random shocks to
stable real-world systems. However, breakthroughs in nonlinear
dynamics raise another possibility: highly complex dynamics can
emerge endogenously from astoundingly parsimonious deterministic
nonlinear models. Nonlinear Time Series Analysis (NLTS) is a
collection of empirical tools designed to aid practitioners detect
whether stochastic or deterministic dynamics most likely drive
observed complexity. Practitioners become 'data detectives'
accumulating hard empirical evidence supporting their modelling
approach. This book is targeted to professionals and graduate
students in engineering and the biophysical and social sciences.
Its major objectives are to help non-mathematicians - with limited
knowledge of nonlinear dynamics - to become operational in NLTS;
and in this way to pave the way for NLTS to be adopted in the
conventional empirical toolbox and core coursework of the targeted
disciplines. Consistent with modern trends in university
instruction, the book makes readers active learners with hands-on
computer experiments in R code directing them through NLTS methods
and helping them understand the underlying logic (please see
www.marco.bittelli.com). The computer code is explained in detail
so that readers can adjust it for use in their own work. The book
also provides readers with an explicit framework - condensed from
sound empirical practices recommended in the literature - that
details a step-by-step procedure for applying NLTS in real-world
data diagnostics.
The burning of fossil fuels and emission of greenhouse gasses
critically impacts the global environment. By utilizing better
techniques and process, businesses can aid in the journey to an
economic, sustainable, and environmentally-friendly future for
generations to come. Business Models for Renewable Energy
Initiatives: Emerging Research and Opportunities is an essential
reference source for the latest scholarly perspectives on present
and future business models in the renewable energy sector.
Featuring coverage on a range of perspectives and topics such as
techno-economics, decentralized power systems, and risk assessment,
this book is designed for academicians, students, and researchers
seeking current scholarly research on green business opportunities
for renewable energy.
This book contains an extensive illustration of use of finite
difference method in solving the boundary value problem
numerically. A wide class of differential equations has been
numerically solved in this book. Starting with differential
equations of elementary functions like hyperbolic, sine and cosine,
we have solved those of special functions like Hermite, Laguerre
and Legendre. Those of Airy function, of stationary localised
wavepacket, of the quantum mechanical problem of a particle in a 1D
box, and the polar equation of motion under gravitational
interaction have also been solved. Mathematica 6.0 has been used to
solve the system of linear equations that we encountered and to
plot the numerical data. Comparison with known analytic solutions
showed nearly perfect agreement in every case. On reading this
book, readers will become adept in using the method.
This book is a concise introduction to the interactions between
earthquakes and human-built structures (buildings, dams, bridges,
power plants, pipelines and more). It focuses on the ways in which
these interactions illustrate the application of basic physics
principles and concepts, including inertia, force, shear, energy,
acceleration, elasticity, friction and stability. It illustrates
how conceptual and quantitative physics emerges in the day-to-day
work of engineers, drawing from examples from regions and events
which have experienced very violent earthquakes with massive loss
of life and property. The authors of this book, a physics educator,
a math educator, and a geotechnical engineer have set off on what
might be considered a mining expedition; searching for ways in
which introductory physics topics and methods can be better
connected with careers of interest to non-physics majors. They
selected ""destructive earthquakes"" as a place to begin because
they are interesting and because future engineers represent a
significant portion of the non-physics majors in introductory
physics courses. Avoiding the extremes of treating applied physics
either as a purely hands-on, conceptual experience or as a lengthy
capstone project for learners who have become masters; the
application in this book can be scattered throughout a broader
physics course or individual learning experience.
|
|