![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
This book is intended as a textbook on laser physics for advanced undergraduates and first-year graduate students in physics and engineering who need to use lasers in their labs and want to understand the physical processes involved with the laser techniques in their fields of study. This book aims to provide a coherent theoretical framework on the light-matter interaction involved with lasers in such a way that students can easily understand the essential topics related to lasers and their applications and get accustomed to the latest cutting-edge research developments. Most of all, the content of this book is concise to be covered in a semester.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
In this thesis, the first measurement of the running of the top quark mass is presented. This is a fundamental quantum effect that had never been studied before. Any deviation from the expected behaviour can be interpreted as a hint of the presence of physics beyond the Standard Model. All relevant aspects of the analysis are extensively described and documented. This thesis also describes a simultaneous measurement of the inclusive top quark-antiquark production cross section and the top quark mass in the simulation. The measured cross section is also used to precisely determine the values of the top quark mass and the strong coupling constant by comparing to state-of-the-art theoretical predictions. All the theoretical and experimental aspects relevant to the results presented in this thesis are discussed in the initial chapters in a concise but complete way, which makes the material accessible to a wider audience.
This book deals with functional materials that are in the
frontiers of current materials science and technology research,
development and manufacture. The first of its kind, it deals with
three classes of materials, (1) magnetic semiconductors, (2)
multiferroics, and (3) graphene. Because of the wide popularity of
these materials there isa strong need for a book about these
materials for graduate students, new researchers in science and
technology, as well as experienced scientists and technologists,
technology based companies and government institutes for science
and technology. Thebook will provide this broad audience with both
theoretical and experimental understanding to help in technological
advances in the development of devices and related new technologies
based on these very interesting and novel materials.
This book discusses quantum theory as the theory of random (Brownian) motion of small particles (electrons etc.) under external forces. Implying that the Schroedinger equation is a complex-valued evolution equation and the Schroedinger function is a complex-valued evolution function, important applications are given. Readers will learn about new mathematical methods (theory of stochastic processes) in solving problems of quantum phenomena. Readers will also learn how to handle stochastic processes in analyzing physical phenomena.
With the emergence of nanoscience and technology in the 21st century, research has shifted its focus on the quantum and optical dynamical properties of matter such as atoms, molecules, and solids which are properly characterized in their dynamic state. Quantum and Optical Dynamics of Matter for Nanotechnology carefully addresses the general key concepts in this field and expands to more complex discussions on the most recent advancements and techniques related to quantum dynamics within the confines of physical chemistry. This book is an essential reference for academics, researchers, professionals, and advanced students interested in a modern discussion of the niche area of nanotechnology.
From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.
This book is an introduction to the concept of symmetries in electromagnetism and explicit symmetry breaking. It begins with a brief background on the origin of the concept of symmetry and its meaning in fields such as architecture, mathematics and physics. Despite the extensive developments of symmetry in these fields, it has yet to be applied to the context of classical electromagnetism and related engineering applications. This book unravels the beauty and excitement of this area to scientists and engineers.
This book presents quantum theory as a theory based on new relationships among matter, thought, and experimental technology, as against those previously found in physics, relationships that also redefine those between mathematics and physics in quantum theory. The argument of the book is based on its title concept, reality without realism (RWR), and in the corresponding view, the RWR view, of quantum theory. The book considers, from this perspective, the thinking of Bohr, Heisenberg, Schroedinger, and Dirac, with the aim of bringing together the philosophy and history of quantum theory. With quantum theory, the book argues, the architecture of thought in theoretical physics was radically changed by the irreducible role of experimental technology in the constitution of physical phenomena, accordingly, no longer defined independently by matter alone, as they were in classical physics or relativity. Or so it appeared. For, quantum theory, the book further argues, made us realize that experimental technology, beginning with that of our bodies, irreducibly shapes all physical phenomena, and thus makes us rethink the relationships among matter, thought, and technology in all of physics.
An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap.It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.
The OCR A level Lab Books support students in completing the A level Core Practical requirements. This lab book includes: all the instructions students need to perform the Core Practicals, consistent with our A level online teaching resources writing frames for students to record their results and reflect on their work CPAC Skills Checklists, so that students can track the practical skills they have learned, in preparation for their exams practical skills practice questions a full set of answers. This lab book is designed to help students to: structure their A level lab work to ensure that they cover the Core Practical assessment criteria track their progress in the development of A level practical skills create a record of all of the Core Practical work they will have completed, in preparation for revision.
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of
Electrical and Computer Engineering of College of Engineering,
University of Arizona, with a joint appointment in the College of
Optical Sciences. Prior to this appointment in August 2006, he was
with University of Arizona, Tucson, USA (as a Research Assistant
Professor); University of the West of England, Bristol, UK;
University of Bristol, Bristol, UK; Tyco Telecommunications,
Eatontown, USA; and National Technical University of Athens,
Athens, Greece. His current research interests include optical
networks, error control coding, constrained coding, coded
modulation, turbo equalization, OFDM applications, and quantum
error correction. He presently directs the Optical Communications
Systems Laboratory (OCSL) within the ECE Department at the
University of Arizona.
Handbook of Thermoset-Based Biocomposites is a three-volume set that provides a comprehensive review on the recent developments, characterization, and applications of natural fiber-reinforced biocomposites. An in-depth look at hybrid composites, nanofillers, and natural fiber reinforcement is divided into three books on polyester, vinyl ester, and epoxy composites. The volumes explore the widespread applications of natural fiber-reinforced polyester, vinyl ester, and epoxy composites ranging from the aerospace sector, automotive parts, construction and building materials, sports equipment, and household appliances. Investigating the physio-chemical, mechanical, and thermal properties of these composites, the volumes also consider the influence of hybridization, fibre architecture, and fibre-ply orientation. This three-volume set serves as a useful reference for researchers, graduate students, and engineers in the field of composites.
Monitoring drought’s slow evolution and identifying the end of a drought is still a big challenge for scientists, natural resource managers, and decision makers. This comprehensive two-volume set with contributions from over 200 experts, and featuring case studies representing numerous countries throughout the world, discusses different aspects of drought from types, indices, and forecasting to monitoring, modeling, and mitigation measures. It also addresses how climate change is impacting drought and decision-making concluding with lessons learned about science, policy, and managing uncertainty. Features: Provides a global perspective on drought prediction and management and a synthesis of the recent state of knowledge. Covers a wide range of topics from essential concepts and advanced techniques for forecasting and modeling drought to societal impacts, consequences, and planning Presents numerous case studies with different management approaches from different regions and countries. Addresses how climate change impacts drought, the increasing challenges associated with managing drought, decision making, and policy implications. Includes contributions from hundreds of experts around the world. Professionals, researchers, academics, and postgraduate students with knowledge in Environmental Sciences, Ecology, Agriculture, Forestry, Hydrology, Water Resources Engineering, and Earth Sciences, as well as those interested in how climate change impacts drought management, will gain new insights from the experts featured in this two-volume handbook.
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior.This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed). Many of these objections rightly call into question typical conceptions of emergence found in the philosophy literature. This book explores whether physics points to a reductive or an emergent structure of the world and proposes a physics-motivated conception of emergence that leaves behind many of the problematic intuitions shaping the philosophical conceptions. Examining several detailed case studies reveal that the structure of physics and the practice of physics research are both more interesting than is captured in this reduction/emergence debate. The results point to stability conditions playing a crucial though underappreciated role in the physics of emergence. This contextual emergence has thought-provoking consequences for physics and beyond, and will be of interest to physics students, researchers, as well as those interested in physics.
Structure and Evolution of Single Stars: An introduction is intended for upper-level undergraduates and beginning graduates with a background in physics. Following a brief overview of the background observational material, the basic equations describing the structure and evolution of single stars are derived. The relevant physical processes, which include the equation of state, opacity, nuclear reactions and neutrino losses are then reviewed. Subsequent chapters describe the evolution of low-mass stars from formation to the final white dwarf phase. The final chapter deals with the evolution of massive stars. |
![]() ![]() You may like...
Robust Optimization of Spline Models and…
Ayse OEzmen
Hardcover
Functional Analysis and Geometry - Selim…
Peter Kuchment, Evgeny Semenov
Paperback
R3,333
Discovery Miles 33 330
Advances in Representation Theory of…
Ibrahim Assem, Christof Geiss, …
Paperback
R3,129
Discovery Miles 31 290
Recent Trends in Mathematical Modeling…
Vinai K. Singh, Yaroslav D. Sergeyev, …
Hardcover
R6,393
Discovery Miles 63 930
Advances in Stochastic and Deterministic…
Panos M. Pardalos, Anatoly Zhigljavsky, …
Hardcover
R3,627
Discovery Miles 36 270
|