|
|
Books > Science & Mathematics > Physics
In the last years there have been great advances in the
applications of topology and differential geometry to problems in
condensed matter physics. Concepts drawn from topology and geometry
have become essential to the understanding of several phenomena in
the area. Physicists have been creative in producing models for
actual physical phenomena which realize mathematically exotic
concepts and new phases have been discovered in condensed matter in
which topology plays a leading role. An important classification
paradigm is the concept of topological order, where the state
characterizing a system does not break any symmetry, but it defines
a topological phase in the sense that certain fundamental
properties change only when the system passes through a quantum
phase transition. The main purpose of this book is to provide a
brief, self-contained introduction to some mathematical ideas and
methods from differential geometry and topology, and to show a few
applications in condensed matter. It conveys to physicists the
basis for many mathematical concepts, avoiding the detailed
formality of most textbooks.
Electromagnetic homogenization is the process of estimating the
effective electromagnetic properties of composite materials in the
long-wavelength regime, wherein the length scales of
nonhomogeneities are much smaller than the wavelengths involved.
This is a bird's-eye view of currently available homogenization
formalisms for particulate composite materials. It presents
analytical methods only, with focus on the general settings of
anisotropy and bianisotropy. The authors largely concentrate on
'effective' materials as opposed to 'equivalent' materials, and
emphasize the fundamental (but sometimes overlooked) differences
between these two categories of homogenized composite materials.
The properties of an 'effective' material represents those of its
composite material, regardless of the geometry and dimensions of
the bulk materials and regardless of the orientations and
polarization states of the illuminating electromagnetic fields. In
contrast, the properties of 'equivalent' materials only represent
those of their corresponding composite materials under certain
restrictive circumstances.
This book seeks to comprehensively cover recent progress in
computational fluid dynamics and nonlinear science and its
applications to MHD and FHD nanofluid flow and heat transfer. The
book will be a valuable reference source to researchers in various
fields, including materials science, nanotechnology, mathematics,
physics, information science, engineering and medicine, seeing to
understand the impact of external magnetic fields on the
hydrothermal behavior of nanofluids in order to solve a wide
variety of theoretical and practical problems.
Today, air-to-surface vessel (ASV) radars, or more generally
maritime surveillance radars, are installed on maritime
reconnaissance aircraft for long-range detection, tracking and
classification of surface ships (ASuW - Air to Surface Warfare) and
for hunting submarines (ASW - anti-submarine warfare). Such radars
were first developed in the UK during WWII as part of the response
to the threat to shipping from German U-Boats. This book describes
the ASV radars developed in the UK after WWII (1946-2000) and used
by the RAF for long-range maritime surveillance.
Physics and the Environment directly connects the physical world to
environmental issues that the world is facing today and will face
in the future. It shows how the first and second laws of
thermodynamics limit the efficiencies of fossil fuel energy
conversions to less than 100%, while also discussing how clever
technologies can enhance overall performance. It also extensively
discusses renewable forms of energy, their physical constraints and
how we must use science and engineering as tools to solve problems
instead of opinion and politics. Dr. Kyle Forinash takes you on a
journey of understanding our mature and well developed technologies
for using fossil fuel resources and how we are unlikely to see huge
gains in their efficiency as well as why their role in climate
change ought to be an argument for their replacement sooner rather
than later. He also discusses the newest technologies in employing
renewable resources and how it is important to understand their
physical constrains in order to make a smooth transition to them.
An entire chapter is dedicated to energy storage, a core question
in renewable energy as well as another chapter on the technical
issues of nuclear energy. The book ends with a discussion on how no
environmental solution, no matter how clever from a technical
aspect, will succeed if there are cheaper alternative, even if
those alternatives have undesirable features associated with them.
NMR spectroscopy has found a wide range of applications in life
sciences over recent decades. Providing a comprehensive
amalgamation of the scattered knowledge of how to apply
high-resolution NMR techniques to biomolecular systems, this book
will break down the conventional stereotypes in the use of NMR for
structural studies. The major focus is on novel approaches in NMR
which deal with the functional interface of either protein-protein
interactions or protein-lipid interactions. Bridging the gaps
between structural and functional studies, the Editors believe a
thorough compilation of these studies will open an entirely new
dimension of understanding of crucial functional motifs. This in
turn will be helpful for future applications into drug design or
better understanding of systems. The book will appeal to NMR
practitioners in industry and academia who are looking for a
comprehensive understanding of the possibilities of applying
high-resolution NMR spectroscopic techniques in probing
biomolecular interactions.
Domain theory, a subject that arose as a response to natural
concerns in the semantics of computation, studies ordered sets
which possess an unusual amount of mathematical structure. This
book explores its connection with quantum information science and
the concept that relates them: disorder. This is not a literary
work. It can be argued that its subject, domain theory and quantum
information science, does not even really exist, which makes the
scope of this alleged 'work' irrelevant. BUT, it does have a
purpose and to some extent, it can also be said to have a method. I
leave the determination of both of those largely to you, the
reader. Except to say, I am hoping to convince the uninitiated to
take a look. A look at what? Twenty years ago, I failed to
satisfactorily prove a claim that I still believe: that there is
substantial domain theoretic structure in quantum mechanics and
that we can learn a lot from it. One day it will be proven to the
point that people will be comfortable dismissing it as a
'well-known' idea that many (possibly including themselves) had
long suspected but simply never bothered to write down. They may
even call it "obvious!" I will not bore you with a brief history
lesson on why it is not obvious, except to say that we have never
been interested in the difficulty of proving the claim only in
establishing its validity. This book then documents various
attempts on my part to do just that.
This is an introductory textbook on computational methods and
techniques intended for undergraduates at the sophomore or junior
level in the fields of science, mathematics, and engineering. It
provides an introduction to programming languages such as FORTRAN
90/95/2000 and covers numerical techniques such as differentiation,
integration, root finding, and data fitting. The textbook also
entails the use of the Linux/Unix operating system and other
relevant software such as plotting programs, text editors, and mark
up languages such as LaTeX. It includes multiple homework
assignments.
The second of two volumes concentrating on the dynamics of slender
bodies within or containing axial flow, Volume 2 covers
fluid-structure interactions relating to shells, cylinders and
plates containing or immersed in axial flow, as well as slender
structures subjected to annular and leakage flows. This volume has
been thoroughly updated to reference the latest developments in the
field, with a continued emphasis on the understanding of dynamical
behaviour and analytical methods needed to provide long-term
solutions and validate the latest computational methods and codes,
with increased coverage of computational techniques and numerical
methods, particularly for the solution of non-linear
three-dimensional problems.
Combined Quantum Mechanical and Molecular Mechanical Modelling of
Biomolecular Interactions continues the tradition of the Advances
in Protein Chemistry and Structural Biology series has been the
essential resource for protein chemists. Each volume brings forth
new information about protocols and analysis of proteins, with each
thematically organized volume guest edited by leading experts in a
broad range of protein-related topics.
Towards Nearly Zero Energy: Urban Settings in the Mediterranean
Climate discusses tactics that can be used to effectively reduce
energy consumption towards zero energy. With energy usage in
buildings accounting for over 40% of primary energy use and 24% of
greenhouse gas emissions worldwide, this remains an unavoidable
objective. The book looks at the life of the systems of energy
production from renewable sources amidst the exceptionally
challenging global economic crisis that the Mediterranean areas and
other societies are currently experiencing. By using an innovative
and interdisciplinary approach of socio-oriented technological
design, the book indicates tools and measures that can be developed
at the public, legislative, and market levels to counterbalance the
large pay-back times of energy efficiency measures. In particular,
the book displays guidelines and best practices to activate new
forms of economic incentives in order to attract potential
investors that demonstrate that a large set of possible solutions
is technically feasible to achieve nearly zero energy, even in high
energy consuming circumstances and urban settings. Furthermore, by
discussing and comparing the economic and energy impact of
different technology options, this work offers guidelines and best
practices to activate new cost-effective forms and social
incentives in order to attract both potential investors and
motivate the urban stakeholders toward nearly zero energy.
This book is based on a commitment to teaching science to
everybody. What may work for training professional scientists does
not work for general science education. Students bring to the
classrooms preconceived attitudes, as well as the emotional baggage
called ""science anxiety."" Students may regard science as cold,
unfriendly, and even inherently hostile and biased against women.
This book has been designed to deal with each of these issues and
results from research in both Denmark and the United States. The
first chapter discusses student attitudes towards science and the
second discusses science anxiety. The connection between the two is
discussed before the introduction of constructivism as a pedagogy
that can aid science learning if it also addresses attitudes and
anxieties. Much of the book elucidates what the authors have
learned as science teachers and science education researchers. They
studied various groups including university students majoring in
the sciences, mathematics, humanities, social sciences, business,
nursing, and education; high school students; teachers' seminary
students; science teachers at all levels from middle school through
college; and science administrators. The insights of these groups
constitute the most important feature of the book, and by sharing
them, the authors hope to help their fellow science teachers to
understand student attitudes about science, to recognize the
connections between these and science anxiety, and to see how a
pedagogy that takes these into account can improve science
learning.
Advances in Atomic, Molecular, and Optical Physics provides a
comprehensive compilation of recent developments in a field that is
in a state of rapid growth, as new experimental and theoretical
techniques are used on many problems, both old and new. Topics
covered include related applied areas, such as atmospheric science,
astrophysics, surface physics, and laser physics, with timely
articles written by distinguished experts that contain relevant
review material and detailed descriptions of important developments
in the field.
|
|