![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics
Our understanding of subatomic particles developed over many years, although a clear picture of the different particles, their interactions and their inter-relationships only emerged in the latter part of the twentieth century. The first ""subatomic particles"" to be investigated were those which exhibit readily observable macroscopic behavior, specifically these are the photon, which we observe as light and the electron, which is manifested as electricity. The true nature of these particles, however, only became clear within the last century or so. The development of the Standard Model provided clarification of the way in which various particles, specifically the hadrons, relate to one another and the way in which their properties are determined by their structure. The final piece, perhaps, of the final model, that is the means by which some particles acquire mass, has just recently been clarified with the observation of the Higgs boson. Since the 1970s it has been known that the measured solar neutrino flux was inconsistent with the flux predicted by solar models. The existence of neutrinos with mass would allow for neutrino flavor oscillations and would provide an explanation for this discrepancy. Only in the past few years, has there been clear experimental evidence that neutrinos have mass. The description of particle structure on the basis of the Standard Model, along with recent discoveries concerning neutrino properties, provides us with a comprehensive picture of the properties of subatomic particles. Part I of the present book provides an overview of the Standard Model of particle physics including an overview of the discovery and properties of the Higgs boson. Part II of the book summarizes the important investigations into the physics of neutrinos and provides an overview of the interpretation of these studies.
This book is based on a set of 18 class-tested lectures delivered to fourth-year physics undergraduates at Grifi th University in Brisbane, and the book presents new discoveries by the Nobel-prize winning LIGO collaboration. The author begins with a review of special relativity and tensors and then develops the basic elements of general relativity (a beautiful theory that unifies special relativity and gravitation via geometry) with applications to the gravitational deflection of light, global positioning systems, black holes, gravitational waves, and cosmology. The book provides readers with a solid understanding of the underlying physical concepts; an ability to appreciate and in many cases derive important applications of the theory; and a solid grounding for those wishing to pursue their studies further. General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology also connects general relativity with broader topics. There is no doubt that general relativity is an active and exciting field of physics, and this book successfully transmits that excitement to readers.
This introduction to quantum field theory (QFT) is written by a physical chemist for physical chemists, chemical physicists, and other non-physicists with knowledge of quantum theory but who want to explore ways in which they might use the power of QFT in their investigations. This book starts where many graduate courses in quantum theory that are offered to chemistry students leave off and first develops some of the necessary tools, such as Fock algebra, which is applied to solving the quantum oscillator problem. Then it is used to develop the theory of coherent states, time-dependent perturbation theory, and the treatment of bosons and fermions. With this background, the QFT of a perfect gas is derived and a connection to thermodynamics is demonstrated. Application to imperfect gases provides a new approach to modelling gas-liquid phase transitions. The book concludes with photons and their interaction with molecular ensembles, and brings us to full circle by deriving the blackbody radiation law, which started it all. The power of the QFT methodology and the breadth of its applications should fascinate the reader as it has the author.
Problems with the conceptual foundations of quantum mechanics date back to attempts by Max Born, Niels Bohr, Werner Heisenberg, as well as many others in the 1920s to continue to employ the classical concept of a particle in the context of the quantum world. The experimental observations at the time and the assumption that the classical concept of a particle was to be preserved have led to an enormous literature on the foundations of quantum mechanics and a great deal of confusion then and now among non-physicists and students in any field that involves quantum theory. It is the historical approach to the teaching of quantum mechanics that is at the root of the problem.Spacetime is the arena within which quantum mechanical phenomena take place. For this reason, several Appendices are devoted to the nature of spacetime as well as to topics that can help us understand it such as vacuum fluctuations, the Unruh effect and Hawking radiation.Because of the success of quantum mechanical calculations, those who wish to understand the foundations of the theory are often given the apocryphal advice, 'just ignore the issue and calculate'. It is hoped that this book will help dispel some of the dismay, frustration, and confusion among those who refuse to take to heart this admonition.
The interface between Physics and Mathematics has been increasingly spotlighted by the discovery of algebraic, geometric, and topological properties in physical phenomena. A profound example is the relation of noncommutative geometry, arising from algebras in mathematics, to the so-called quantum groups in the physical viewpoint. Two apparently unrelated puzzles - the solubility of some lattice models in statistical mechanics and the integrability of differential equations for special problems - are encoded in a common algebraic condition, the Yang-Baxter equation. This backdrop motivates the subject of this book, which reveals Knot Theory as a highly intuitive formalism that is intimately connected to Quantum Field Theory and serves as a basis to String Theory.This book presents a didactic approach to knots, braids, links, and polynomial invariants which are powerful and developing techniques that rise up to the challenges in String Theory, Quantum Field Theory, and Statistical Physics. It introduces readers to Knot Theory and its applications through formal and practical (computational) methods, with clarity, completeness, and minimal demand of requisite knowledge on the subject. As a result, advanced undergraduates in Physics, Mathematics, or Engineering, will find this book an excellent and self-contained guide to the algebraic, geometric, and topological tools for advanced studies in theoretical physics and mathematics.
Comprises four parts, the first of which provides an overview of the topics that are developed from fundamental principles to more advanced levels in the other parts. Presents in the second part an in-depth introduction to the relevant background in molecular and cellular biology and in physical chemistry, which should be particularly useful for students without a formal background in these subjects. Provides in the third part a detailed treatment of microscopy techniques and optics, again starting from basic principles. Introduces in the fourth part modern statistical approaches to the determination of parameters of interest from microscopy data, in particular data generated by single molecule microscopy experiments. Uses two topics related to protein trafficking (transferrin trafficking and FcRn-mediated antibody trafficking) throughout the text to motivate and illustrate microscopy techniques
"Advances in Imaging and Electron Physics "features cutting-edge
articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains. * Contributions from leading authorities * Informs and updates on all the latest developments in the field
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What the cells consists of? Where are its organelles? What function each organelle fulfils? From a chemists' point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, some of the fundamental questions are about the physical movement of all these molecules between organelles within the cell, their exchange with the extracellular medium, as well as electrical phenomena resulting from such transport. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and various electrical effects, and that in turn leads to biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfill its function as a part of a larger organ or organism. The first volume of this book is an inventory of physical transport processes occurring in cells while this second volume provides a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
2013 Winner (Gold Medal), Classical Studies/Philosophy, Independent Publisher Book Awards -- 2013 Winner, Spirituality: General, International Book Awards -- 2013 Winner, Science, National Indie Excellence Awards -- 2013 Finalist, Science: General, International Book Awards -- 2013 Finalist, Best New Non-Fiction, International Book Awards -- 2013 Finalist, Best Cover Design: Non-Fiction, International Book Awards -- 2013 Finalist, Philosophy, National Indie Excellence Awards -- The Eternal Law takes the reader on a fascinating journey through some of the most profound questions related to our understanding of modern science. What does it mean to say that there is an eternal mathematical law underpinning all of physical reality? How must we expand our narrow conception of science to include not only logic but also intuition, consciousness, and the pursuit of beauty, symmetry, simplicity, and unity? Is truth objective, or is it nothing more than a whimsical projection of opinions? Why were many of the key founders of modern science inevitably drawn to ancient Greek philosophy? Spencer's extraordinary clarity helps to restore a sane vision of reality, while deepening our appreciation of what Einstein called 'the mysterious'.
"Advances in Imaging and Electron Physics "features cutting-edge
articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains. * Contributions from leading authorities * Informs and updates on all the latest developments in the field
For decades, the surface-plasmon-polariton wave guided by the
interface of simple isotropic materials dominated the scene.
However, in recent times research on electromagnetic surface waves
guided by planar interfaces has expanded into new and exciting
areas. In the 1990's research focused on advancing knowledge of the
newly discovered Dyakonov wave. More recently, much of the surface
wave research is motivated by the proliferation of nanotechnology
and the growing number of materials available with novel
properties. This book leads the reader from the relatively simple
surface-plasmon-polariton wave with isotropic materials to the
latest research on various types of electromagnetic surface waves
guided by the interfaces of complex materials enabled by recent
developments in nanotechnology. This includes: Dyakonov waves
guided by interfaces formed with columnar thin films, Dyakonov-Tamm
waves guided by interfaces formed with sculptured thin films, and
multiple modes of surface-plasmon-polariton waves guided by the
interface of a metal and a periodically varying dielectric
material.
Biochemistry of Lipids, Lipoproteins and Membranes, Seventh Edition serves as a comprehensive, general reference book for scientists and students studying lipids, lipoproteins and membranes. Here, across 19 chapters, leaders in the field summarize fundamental concepts, recent research developments, data analysis, and implications for human disease and intervention. Topics discussed include lipid biology in both prokaryotes and eukaryotes, fatty acid synthesis, desaturation and elongation, and pathways leading to synthesis of complex phospholipids, sphingolipids and their structural variants. Chapters also examine how bioactive lipids are involved in cell signaling, with an emphasis on disease implications and pathological consequences. As the field advances, each chapter in this new edition has been fully revised to address emerging topics, with all-new coverage of lipid droplets and their role as regulatory organelles for energy homeostasis, as well as their relationship to obesity, liver disease and diabetes. Evolving research in fatty acid handling and storage in eukaryotes is also discussed in-depth, with new sections addressing fatty acid uptake, activation and lipolysis.
A glass is disordered material like a viscous liquid and behaves mechanically like a solid. A glass is normally formed by supercooling the viscous liquid fast enough to avoid crystallization, and the liquid-glass transition occurs in diverse manners depending on the materials, their history, and the supercooling processes, among other factors. The glass transition in colloids, molecular systems, and polymers is studied worldwide. This book presents a unified theory of the liquid-glass transition on the basis of the two band model from statistical quantum field theory associated with the temperature Green's function method. It is firmly original in its approach and will be of interest to researchers and students specializing in the glass transition across the physical sciences.
With the emergence of nanoscience and technology in the 21st century, research has shifted its focus on the quantum and optical dynamical properties of matter such as atoms, molecules, and solids which are properly characterized in their dynamic state. Quantum and Optical Dynamics of Matter for Nanotechnology carefully addresses the general key concepts in this field and expands to more complex discussions on the most recent advancements and techniques related to quantum dynamics within the confines of physical chemistry. This book is an essential reference for academics, researchers, professionals, and advanced students interested in a modern discussion of the niche area of nanotechnology.
"Advances in Imaging and Electron Physics "features cutting-edge
articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains. * Contributions from leading authorities * Informs and updates on all the latest developments in the field |
You may like...
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R7,995
Discovery Miles 79 950
|