![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
Information is a core concept in animal communication: individuals routinely produce, acquire, process and store information, which provides the basis for their social life. This book focuses on how animal acoustic signals code information and how this coding can be shaped by various environmental and social constraints. Taking birds and mammals, including humans, as models, the authors explore such topics as communication strategies for "public" and "private" signaling, static and dynamic signaling, the diversity of coded information and the way information is decoded by the receiver. The book appeals to a wide audience, ranging from bioacousticians, ethologists and ecologists to evolutionary biologists. Intended for students and researchers alike, it promotes the idea that Shannon and Weaver's Mathematical Theory of Communication still represents a strong framework for understanding all aspects of the communication process, including its dynamic dimensions.
This book includes select papers presented during the 16th Asian Congress of Fluid Mechanics, held in JNCASR, Bangalore, and presents the latest developments in computational, experimental and theoretical research as well as industrial and technological advances. This book is of interest to researchers working in the field of fluid mechanics.
This book examines the true core of philosophy and metaphysics, taking account of quantum and relativity theory as it applies to physical Reality, and develops a line of reasoning that ultimately leads us to Reality as it is currently understood at the most fundamental level - the Standard Model of Elementary Particles. This book develops new formalisms for Logic that are of interest in themselves and also provide a Platonic bridge to Reality. The bridge to Reality will be explored in detail in a subsequent book, Relativistic Quantum Metaphysics: A First Principles Basis for the Standard Model of Elementary Particles. We anticipate that the current "fundamental" level of physical Reality may be based on a still lower level and/or may have additional aspects remaining to be found. However the effects of certain core features such as quantum theory and relativity theory will persist even if a lower level of Reality is found, and these core features suggest the form of a new Metaphysics of physical Reality. We have coined the phrase "Operator Metaphysics" for this new metaphysics of physical Reality. The book starts by describing aspects of Philosophy and Metaphysics relevant to the study of current physical Reality. Part of this development are new Logics, Operator Logic and Quantum Operator Logic, developed in earlier books by this author (and revised and expanded in this book). Using them we are led to develop a connection to the beginnings of The Standard Model of Elementary Particles. While mathematics is essential in the latter stages of the book we have tried to present it with sufficient text discussion to make what it is doing understandable to the non-mathematical reader. Generally we will avoid using the jargon of Philosophy, Logic and Physics as much as possible.
This book explores the fascinating and intimate relationship between music and physics. Over millennia, the playing of, and listening to music have stimulated creativity and curiosity in people all around the globe. Beginning with the basics, the authors first address the tonal systems of European-type music, comparing them with those of other, distant cultures. They analyze the physical principles of common musical instruments with emphasis on sound creation and particularly charisma. Modern research on the psychology of musical perception - the field known as psychoacoustics - is also described. The sound of orchestras in concert halls is discussed, and its psychoacoustic effects are explained. Finally, the authors touch upon the role of music for our mind and society. Throughout the book, interesting stories and anecdotes give insights into the musical activities of physicists and their interaction with composers and musicians.
Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.
This proceedings is focused on the emerging concept of Collaborative Innovation Networks (COINs). COINs are at the core of collaborative knowledge networks, distributed communities taking advantage of the wide connectivity and the support of communication technologies, spanning beyond the organizational perimeter of companies on a global scale. The book presents the refereed conference papers from the 7th International Conference on COINs, October 8-9, 2019, in Warsaw, Poland. It includes papers for both application areas of COINs, (1) optimizing organizational creativity and performance, and (2) discovering and predicting new trends by identifying COINs on the Web through online social media analysis. Papers at COINs19 combine a wide range of interdisciplinary fields such as social network analysis, group dynamics, design and visualization, information systems and the psychology and sociality of collaboration, and intercultural analysis through the lens of online social media. They will cover most recent advances in areas from leadership and collaboration, trend prediction and data mining, to social competence and Internet communication.
Quantum information is an emerging field which has attracted a lot of attention in the last couple of decades. It is a broad subject which extends from the most applied questions (e.g. how to build quantum computers or secure cryptographic systems) to the most theoretical problems concerning the formalism and interpretation of quantum mechanics, its complexity, and its potential to go beyond classical physics. This book is an introduction to quantum information with special emphasis on continuous-variable systems (such as light) which can be described as collections of harmonic oscillators. It covers a selection of basic concepts, focusing on their physical meaning and mathematical treatment. It starts from the very first principles of quantum mechanics, and builds up the concepts and techniques following a logical progression. This is an excellent reference for students with a full semester of standard quantum mechanics and researchers in closely related fields.
This book, the first of a two-volume set, focuses on the basic physical principles of blackbody radiometry and describes artificial sources of blackbody radiation, widely used as sources of optical radiation, whose energy characteristics can be calculated on the base of fundamental physical laws. Following a review of radiometric quantities, radiation laws, and radiative heat transfer, it introduces the basic principles of blackbody radiators design, details of their practical implementation, and methods of measuring their defining characteristics, as well as metrological aspects of blackbody-based measurements. Chapters are dedicated to the effective emissivity concept, methods of increasing effective emissivities, their measurement and modeling using the Monte Carlo method, techniques of blackbody radiators heating, cooling, isothermalization, and measuring their temperature. An extensive and comprehensive reference source, this book is of considerable value to students, researchers, and engineers involved in any aspect of blackbody radiometry.
Paul Dirac was among the greatest scientific geniuses of the modern age. One of Einstein's most admired colleagues, he helped discover quantum mechanics, and his prediction of antimatter was one of the greatest triumphs in the history of physics. In 1933 he became the youngest theoretician ever to win the Nobel Prize in Physics. Dirac's personality, like his achievements, is legendary. The "Strangest Man" uses previously undiscovered archives to reveal the many facets of Dirac's brilliantly original mind.
Written by a former International Atomic Energy Agency (IAEA) nuclear inspector and nuclear security expert, this book provides a comprehensive and authentic overview of current global nuclear developments. The author provides detailed insights into current and past nuclear crises and reveals the technical capabilities, political strategies and motives of nuclear weapon owners. By analyzing the nuclear programs and strategies of various countries, including the USA, Russia, China, Great Britain and France, this book highlights the existing global nuclear threat and the risks it entails for humanity. It also describes the current blockades and suggests possible ways out. Given its scope, the book will appeal to scholars and policymakers interested in gaining new insights into sensitive or complex nuclear programs in various countries.
This book addresses time-bound geotectonic evolution of the various geological terrains of the Indian continent, on the basis of integrated geophysical studies, like seismic, seismological, gravity, magnetic, magnetotelluric and heat flow, carried out over the past five decades. Further, it discusses elastic and petrophysical properties of the Earth's crust relevant to geological investigations. The book also shares latest findings on the geodynamic development of the Indian shield and nearby continental margins, including Arabian Sea.
This book is intended to be a course about the creation and evolution of the universe at large, including the basic macroscopic building blocks (galaxies) and the overall large-scale structure. This text covers a broad range of topics for a graduate-level class in a physics department where students' available credit hours for astrophysics classes are limited. The sections cover galactic structure, external galaxies, galaxy clustering, active galaxies, general relativity and cosmology.
This article is dedicated to Claudio Bunster on the occasion of his 60th birthday. It is a great honor to take this opportunity to express my gratitude to him, who in my opinion has been the greatest national physicist ever, for his wise guidance and intrepid support through the years. As a Chilean, I can further tell that Claudio's contributions have been well far beyond theoretical physics, helping our country to be ready to face future challenges through science. Gravity in diverse dimensions is a subject in which Claudio has done major c- tributions, encouraging in many ways the following work, that is being made along different fronts in collaboration with my colleagues Diego Correa, Gustavo Dotti, Julio Oliva and David Tempo. Thepursuitforwormholesolutions,whicharehandlesinthespacetimetopology, it is as old as General Relativity and it has appeared in theoretical physics within different subjects, ranging from the attempt of describing physics as pure geometry, as in the Einstein-Rosen bridge model of a particle [1], to the concept of "charge withoutcharge"[2],aswell asindifferentissuesconcerningthe Euclideanapproach to quantum gravity (see, e.g., [3]). More recently, the systematic study of this kind of objects was pushed forward by the works of Morris, Thorne and Yurtsever [4,5].
Caustics are natural phenomena, forming light patterns in rainbows or through drinking glasses, and creating light networks at the bottom of swimming pools. Only in recent years have scientists started to artificially create simple caustics with laser light. However, these realizations have already contributed to progress in advanced imaging, lithography, and micro-manipulation. In this book, Alessandro Zannotti pioneers caustics in many ways, establishing the field of artificial caustic optics. He employs caustic design to customize high-intensity laser light. This is of great relevance for laser-based machining, sensing, microscopy, and secure communication. The author also solves a long standing problem concerning the origin of rogue waves which appear naturally in the sea and can have disastrous consequences. By means of a far-reaching optical analogy, he identifies scattering of caustics in random media as the origin of rogue waves, and shows how nonlinear light-matter interaction increases their probability. |
![]() ![]() You may like...
Gibbs' Entropic Paradox and Problems of…
Eugene Barsky
Paperback
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,617
Discovery Miles 16 170
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R82,245
Discovery Miles 822 450
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,324
Discovery Miles 53 240
Everyday Applied Geophysics 2…
Nicolas Florsch, Frederic Muhlach, …
Hardcover
|