|
|
Books > Science & Mathematics > Physics
With the fast pace of developments in quantum technologies, it is
more than ever necessary to make the new generation of students in
science and engineering familiar with the key ideas behind such
disruptive systems. This book intends to fill such a gap between
experts and non-experts in the field by providing the reader with
the basic tools needed to understand the latest developments in
quantum communications and its future directions. This is not only
to expand the audience knowledge but also to attract new talents to
this flourishing field. To that end, the book as a whole does not
delve into much detail and most often suffices to provide some
insight into the problem in hand. The primary users of the book
will then be students in science and engineering in their final
year of undergraduate studies or early years of their post-graduate
programmes.
Gas phase molecular spectroscopy is a powerful tool for obtaining
information on the geometry and internal structure of isolated
molecules as well as on the interactions that they undergo. It
enables the study of fundamental parameters and processes and is
also used for the sounding of gas media through optical techniques.
It has been facing always renewed challenges, due to the
considerable improvement of experimental techniques and the
increasing demand for accuracy and scope of remote sensing
applications.
In practice, the radiating molecule is usually not isolated but
diluted in a mixture at significant total pressure. The collisions
among the molecules composing the gas can have a large influence on
the spectral shape, affecting all wavelength regions through
various mechanisms. These must be taken into account for the
correct analysis and prediction of the resulting spectra.
This book reviews our current experimental and theoretical
knowledge and the practical consequences of collisional effects on
molecular spectral shapes in neutral gases. General expressions are
first given. They are formal of difficult use for practical
calculations often but enable discussion of the approximations
leading to simplified situations. The first case examined is that
of isolated transitions, with the usual pressure broadening and
shifting but also refined effects due to speed dependence and
collision-induced velocity changes. Collisional line-mixing, which
invalidates the notion of isolated transitions and has spectral
consequences when lines are closely spaced, is then discussed
within the impact approximation. Regions where the contributions of
many distant lines overlap, such as troughsbetween transitions and
band wings, are considered next. For a description of these far
wings the finite duration of collisions and concomitant breakdown
of the impact approximation must be taken into account. Finally,
for long paths or elevated pressures, the dipole or polarizability
induced by intermolecular interactions can make significant
contributions. Specific models for the description of these
collision induced absorption and light scattering processes are
presented.
The above mentioned topics are reviewed and discussed from a
threefold point of view: the various models, the available data,
and the consequences for applications including heat transfer,
remote sensing and optical sounding. The extensive bibliography and
discussion of some remaining problems complete the text.
- State of the art on the subject
- A bibliography of nearly 1000 references
- Tools for practical calculations
- Consequences for other scientific fields
- Numerous illustrative examples
- Fulfilling a need since there is no equivalent monograph on the
subject
This book introduces the reader into the field of the physics of
processes occurring in porous media. It targets Master and PhD
students who need to gain fundamental understanding the impact of
confinement on transport and phase change processes. The book gives
brief overviews of topics like thermodynamics, capillarity and
fluid mechanics in order to launch the reader smoothly into the
realm of porous media. In-depth discussions are given of phase
change phenomena in porous media, single phase flow, unsaturated
flow and multiphase flow. In order to make the topics concrete the
book contains numerous example calculations. Further, as much
experimental data as possible is plugged in to give the reader the
ability to quantify phenomena.
This book gives a rigorous, physics focused, introduction to set
theory that is geared towards natural science majors.We present the
science major with a robust introduction to set theory, focusing on
the specific knowledge and skills that will unavoidably be needed
in calculus topics and natural science topics in general, rather
than taking a philosophical-math-fundamental oriented approach that
is commonly found in set theory textbooks.
Gauge theories have provided our most successful representations of
the fundamental forces of nature. How, though, do such
representations work? Interpretations of gauge theory aim to answer
this question. Through understanding how a gauge theory's
representations work, we are able to say what kind of world our
gauge theories reveal to us.
A gauge theory's representations are mathematical structures.
These may be transformed among themselves while certain features
remain the same. Do the representations related by such a gauge
transformation merely offer alternative ways of representing the
very same situation? If so, then gauge symmetry is a purely formal
property since it reflects no corresponding symmetry in
nature.
Gauging What's Real describes the representations provided by
gauge theories in both classical and quantum physics. Richard
Healey defends the thesis that gauge transformations are purely
formal symmetries of almost all the classes of representations
provided by each of our theories of fundamental forces. He argues
that evidence for classical gauge theories of forces (other than
gravity) gives us reason to believe that loops rather than points
are the locations of fundamental properties. In addition to
exploring the prospects of extending this conclusion to the quantum
gauge theories of the Standard Model of elementary particle
physics, Healey assesses the difficulties faced by attempts to base
such ontological conclusions on the success of these theories.
In the fourty-six years that have gone by since the first volume of
Progress in Optics was published, optics has become one of the most
dynamic fields of science. The volumes in this series which have
appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
- Metamaterials
- Polarization Techniques
- Linear Baisotropic Mediums
- Ultrafast Optical Pulses
- Quantum Imaging
- Point-Spread Funcions
- Discrete Wigner Functions
This book reviews basic electromagnetic (EM) wave theory and
applies it specifically to lasers in order to give the reader not
only tangible examples of how the theory is manifested in real
life, but also practical knowledge about lasers, and their
operation and usage. The latter can be useful for those involved
with using lasers. As a short treatise on this subject matter, this
book is not intended to dwell deeply into the details of EM waves
nor lasers. A bibliography is provided for those who wish to
explore in more depth the topics covered in this book. Rather the
aim of this book is to offer a quick overview, which will allow the
reader to gain a competent general understanding of EM waves and
lasers.
|
|