![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
This book addresses the fabrication of responsive functional nanomaterials and their use in sustainable energy and environmental applications. Responsive functional nanomaterials can change their physiochemical properties to adapt to their environment. Accordingly, these novel materials are playing an increasingly important role in a diverse range of applications, such as sensors and actuators, self-healing materials, separation, drug delivery, diagnostics, tissue engineering, functional coatings and textiles. This book reports on the latest advances in responsive functional nanomaterials in a wide range of applications and will appeal to a broad readership across the fields of materials, chemistry, sustainable energy, environmental science and nanotechnology.
Mathematics for Physicists is a relatively short volume covering all the essential mathematics needed for a typical first degree in physics, from a starting point that is compatible with modern school mathematics syllabuses. Early chapters deliberately overlap with senior school mathematics, to a degree that will depend on the background of the individual reader, who may quickly skip over those topics with which he or she is already familiar. The rest of the book covers the mathematics that is usually compulsory for all students in their first two years of a typical university physics degree, plus a little more. There are worked examples throughout the text, and chapter-end problem sets. Mathematics for Physicists features: * Interfaces with modern school mathematics syllabuses * All topics usually taught in the first two years of a physics degree * Worked examples throughout * Problems in every chapter, with answers to selected questions at the end of the book and full solutions on a website This text will be an excellent resource for undergraduate students in physics and a quick reference guide for more advanced students, as well as being appropriate for students in other physical sciences, such as astronomy, chemistry and earth sciences.
Learn about the Big Bang theory, astrophysics and gravity in The
Physics Book.
This book provides an overview of state-of-the-art implementations of quantum random number generators (QRNGs), and especially examines their relation to classical statistical randomness models and numerical techniques for computing random numbers. The reader - who ideally has a background in classical statistics, computer science, or cryptography - is introduced to the world of quantum bits step by step, and explicit relations between QRNGs and their classical counterparts are identified along the way. Random number generation is a major pillar of cryptography. Capitalizing on the randomness inherent in quantum phenomena is a rapidly evolving branch of quantum cryptography with countless applications for the future. The value of quantum randomness for cryptographic purposes is empirically demonstrated in statistical evaluations of QRNGs' performance compared to classical techniques for true and pseudorandom number generation. The book then provides an overview of technical implementations of QRNGs, before a concluding discussion of major achievements and remaining obstacles in the field rounds out the coverage, while also opening the door for future research directions.
This book uses new mathematical tools to examine broad computability and complexity questions in enumerative combinatorics, with applications to other areas of mathematics, theoretical computer science, and physics. A focus on effective algorithms leads to the development of computer algebra software of use to researchers in these domains. After a survey of current results and open problems on decidability in enumerative combinatorics, the text shows how the cutting edge of this research is the new domain of Analytic Combinatorics in Several Variables (ACSV). The remaining chapters of the text alternate between a pedagogical development of the theory, applications (including the resolution by this author of conjectures in lattice path enumeration which resisted several other approaches), and the development of algorithms. The final chapters in the text show, through examples and general theory, how results from stratified Morse theory can help refine some of these computability questions. Complementing the written presentation are over 50 worksheets for the SageMath and Maple computer algebra systems working through examples in the text.
This book highlights leading-edge research in multi-disciplinary areas in Physics, Engineering, Medicine, and Health care, from the 6th IRC Conference on Science, Engineering and Technology (IRC-SET 2020) held in July 2020 at Singapore. The papers were shortlisted after extensive rounds of reviews by a panel of esteemed individuals who are pioneers in their domains. The book also contains excerpts of the speeches by eminent personalities who graced the occasion, thereby providing written documentation of the event.
This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler's destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.
This book reviews basic electromagnetic (EM) wave theory and applies it specifically to lasers in order to give the reader not only tangible examples of how the theory is manifested in real life, but also practical knowledge about lasers, and their operation and usage. The latter can be useful for those involved with using lasers. As a short treatise on this subject matter, this book is not intended to dwell deeply into the details of EM waves nor lasers. A bibliography is provided for those who wish to explore in more depth the topics covered in this book. Rather the aim of this book is to offer a quick overview, which will allow the reader to gain a competent general understanding of EM waves and lasers.
Effects of many-body interactions and superconducting correlations have become central questions in the quantum transport community. While most previous works investigating current fluctuations in nanodevices have been restricted to the stationary regime, Seoane's thesis extends these studies to the time domain. It provides relevant information about the time onset of electronic correlations mediated by interactions and superconductivity. This knowledge is essential for the development of fast electronic devices, as well as novel applications requiring fast manipulations, such as quantum information processing. In addition, the thesis establishes contact with issues of broad current interest such as non-equilibrium quantum phase transitions.
This book highlights a series of new itinerant electron models proposed based on the experimental results of electron spectra obtained since 1970. Although conventional magnetic ordering models were established before 1960, many problems remain to be solved. The new models in this book include an O 2p itinerant electron model for magnetic oxides, a new itinerant electron model for magnetic metals, and a Weiss electron pair model for the origin of magnetic ordering energy of magnetic metals and oxides. With these models, the book explains typical magnetic ordering phenomena including those that cannot be explained using conventional models. These new models are easier to understand than the conventional magnetic ordering models.
Sound, devoid of meaning, would not matter to us. It is the information sound conveys that helps the brain to understand its environment. Sound and its underlying meaning are always associated with time and space. There is no sound without spatial properties, and the brain always organizes this information within a temporal-spatial framework. This book is devoted to understanding the importance of meaning for spatial and related further aspects of hearing, including cross-modal inference. People, when exposed to acoustic stimuli, do not react directly to what they hear but rather to what they hear means to them. This semiotic maxim may not always apply, for instance, when the reactions are reflexive. But, where it does apply, it poses a major challenge to the builders of models of the auditory system. Take, for example, an auditory model that is meant to be implemented on a robotic agent for autonomous search-&-rescue actions. Or think of a system that can perform judgments on the sound quality of multimedia-reproduction systems. It becomes immediately clear that such a system needs * Cognitive capabilities, including substantial inherent knowledge * The ability to integrate information across different sensory modalities To realize these functions, the auditory system provides a pair of sensory organs, the two ears, and the means to perform adequate preprocessing of the signals provided by the ears. This is realized in the subcortical parts of the auditory system. In the title of a prior book, the term Binaural Listening is used to indicate a focus on sub-cortical functions. Psychoacoustics and auditory signal processing contribute substantially to this area. The preprocessed signals are then forwarded to the cortical parts of the auditory system where, among other things, recognition, classification, localization, scene analysis, assignment of meaning, quality assessment, and action planning take place. Also, information from different sensory modalities is integrated at this level. Between sub-cortical and cortical regions of the auditory system, numerous feedback loops exist that ultimately support the high complexity and plasticity of the auditory system. The current book concentrates on these cognitive functions. Instead of processing signals, processing symbols is now the predominant modeling task. Substantial contributions to the field draw upon the knowledge acquired by cognitive psychology. The keyword Binaural Understanding in the book title characterizes this shift. Both books, The Technology of Binaural Listening and the current one, have been stimulated and supported by AABBA, an open research group devoted to the development and application of models of binaural hearing. The current book is dedicated to technologies that help explain, facilitate, apply, and support various aspects of binaural understanding. It is organized into five parts, each containing three to six chapters in order to provide a comprehensive overview of this emerging area. Each chapter was thoroughly reviewed by at least two anonymous, external experts. The first part deals with the psychophysical and physiological effects of Forming and Interpreting Aural Objects as well as the underlying models. The fundamental concepts of reflexive and reflective auditory feedback are introduced. Mechanisms of binaural attention and attention switching are covered-as well as how auditory Gestalt rules facilitate binaural understanding. A general blackboard architecture is introduced as an example of how machines can learn to form and interpret aural objects to simulate human cognitive listening. The second part, Configuring and Understanding Aural Space, focuses on the human understanding of complex three-dimensional environments-covering the psychological and biological fundamentals of auditory space formation. This part further addresses the human mechanisms used to process information and interact in complex reverberant environments, such as concert halls and forests, and additionally examines how the auditory system can learn to understand and adapt to these environments. The third part is dedicated to Processing Cross-Modal Inference and highlights the fundamental human mechanisms used to integrate auditory cues with cues from other modalities to localize and form perceptual objects. This part also provides a general framework for understanding how complex multimodal scenes can be simulated and rendered. The fourth part, Evaluating Aural-scene Quality and Speech Understanding, focuses on the object-forming aspects of binaural listening and understanding. It addresses cognitive mechanisms involved in both the understanding of speech and the processing of nonverbal information such as Sound Quality and Quality-of- Experience. The aesthetic judgment of rooms is also discussed in this context. Models that simulate underlying human processes and performance are covered in addition to techniques for rendering virtual environments that can then be used to test these models. The fifth part deals with the Application of Cognitive Mechanisms to Audio Technology. It highlights how cognitive mechanisms can be utilized to create spatial auditory illusions using binaural and other 3D-audio technologies. Further, it covers how cognitive binaural technologies can be applied to improve human performance in auditory displays and to develop new auditory technologies for interactive robots. The book concludes with the application of cognitive binaural technologies to the next generation of hearing aids.
This book deals with functional materials that are in the
frontiers of current materials science and technology research,
development and manufacture. The first of its kind, it deals with
three classes of materials, (1) magnetic semiconductors, (2)
multiferroics, and (3) graphene. Because of the wide popularity of
these materials there isa strong need for a book about these
materials for graduate students, new researchers in science and
technology, as well as experienced scientists and technologists,
technology based companies and government institutes for science
and technology. Thebook will provide this broad audience with both
theoretical and experimental understanding to help in technological
advances in the development of devices and related new technologies
based on these very interesting and novel materials.
Magnetic methods are widely used in exploration, engineering,
borehole and global geophysics, and the subjects of this book are
the physical and mathematical principles of these methods
regardless of the area of application.
While there are many good books in particle physics, very seldom if ever a non-specialist comprehensive description of Quantum Field Theory has appeared. The intention of this short book is to offer a guided tour of that innermost topic of Theoretical Physics, in plain words and avoiding the mathematical apparatus, but still describing its various facets up to the research frontier, with the aim to give a glimpse of what the human mind has been capable of imagining for dealing with the behavior of Nature at the most fundamental level.
This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Caratheodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Henon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations. |
![]() ![]() You may like...
The Oxford Handbook of Sound Studies
Trevor Pinch, Karin Bijsterveld
Hardcover
R5,634
Discovery Miles 56 340
Molecular Beam Epitaxy - A Short History
John Orton, Tom Foxon
Hardcover
R2,977
Discovery Miles 29 770
Orbital Approach to the Electronic…
Enric Canadell, Marie-Liesse Doublet, …
Hardcover
R3,332
Discovery Miles 33 320
Foams - Structure and Dynamics
Isabelle Cantat, Sylvie Cohen-Addad, …
Hardcover
R2,444
Discovery Miles 24 440
Fluid Dynamics - Part 1: Classical Fluid…
Anatoly I. Ruban, Jitesh S. B. Gajjar
Hardcover
R2,448
Discovery Miles 24 480
Statistical Physics, Optimization…
Florent Krzakala, Federico Ricci Tersenghi, …
Hardcover
R2,486
Discovery Miles 24 860
Excitons and Cooper Pairs - Two…
Monique Combescot, Shiue-Yuan Shiau
Hardcover
R3,203
Discovery Miles 32 030
|