![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics
SINGLE SOURCE GUIDE TO PEROXIDASES AND CATALASES Reflecting the important historical discoveries and exciting research in the field in recent years, "Peroxidases and Catalases: Biochemistry, Biophysics, Biotechnology and Physiology" provides a much-needed systematic, up-to-date treatment of peroxidases and catalases. From the structure and properties of the various superfamilies to current applications of peroxidases, the book consolidates vast amounts of information previously scattered in the professional literature, covering all aspects of these ubiquitous enzymes that act on a variety of substances and processes in living systems--their properties, reactions, crystal structures, cloning, and more. Considering the subject from both theoretical and applied perspectives, "Peroxidases and Catalases" offers a critical review of the literature and detailed discussions of the most current research. Chapters cover: The background and history of peroxidases and catalases Plant, fungal, and bacterial peroxidase superfamilies and their organization Mammalian peroxidases including medical and physiological roles Spectroscopic and theoretical techniques for studying peroxidases highlighting the contributions of physicists and physical/theoretical chemists Heme peroxidases, catalases, and other peroxidases such as vanadium and selenium peroxidase Relevant plant and animal physiology This one-stop reference is a vital reference for biochemists, biologists, biochemical engineers, physiologists, environmental and pharmaceutical researchers, and others interested in the study and use of peroxidases and catalases.
Many events that affect global energy production and consumption have occurred since the second edition of Energy in the 21st Century appeared in 2011. For example, an earthquake and tsunami in Japan led to the disruption of the Fukushima nuclear facility and a global re-examination of the safety of the nuclear industry. Oil and natural gas prices continue to be volatile, and the demand for energy has been affected by the global economy. The third edition updates data and the discussion of recent events.Energy in the 21st Century has been used as the text for an introductory energy course for the general college student population. Based on student feedback, we have included several features that enhance the value of the third edition as a textbook. In particular, we have included learning objectives at the beginning of each chapter, end of chapter activities, a comprehensive index, and a glossary. Points to Ponder are abbreviated as P2P in the Learning Objectives boxes and are provided throughout the text. They are designed to encourage the reader to consider the material from different perspectives.
This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.
This book seeks to construct a consistent fundamental quantum theory of gravity, which is often considered one of the most challenging open problems in present-day physics. It approaches this challenge using modern functional renormalization group techniques, and attempts to realize the idea of "Asymptotic Safety" originally proposed by S. Weinberg. Quite remarkably, the book makes significant progress regarding both the fundamental aspects of the program and its phenomenological consequences. The conceptual developments pioneer the construction of a well-behaved functional renormalization group equation adapted to spacetimes with a preferred time-direction. It is demonstrated that the Asymptotic Safety mechanism persists in this setting and extends to many phenomenologically interesting gravity-matter systems. These achievements constitute groundbreaking steps towards bridging the gap between quantum gravity in Euclidean and Lorentzian spacetimes.The phenomenological applications cover core topics in quantum gravity, e.g. constructing a phenomenologically viable cosmological evolution based on quantum gravity effects in the very early universe, and analyzing quantum corrections to black holes forming from a spherical collapse.As a key feature, all developments are presented in a comprehensive and accessible way. This makes the work a timely and valuable guide into the rapidly evolving field of Asymptotic Safety.
This book presents the first simultaneous detection of neutrons and positrons after a terrestrial gamma-ray flash (TGF), a highest-energy transient phenomenon on the earth, triggered by a lightning discharge, based on innovative ground-based observations made in the Hokuriku area of Japan. TGFs, known to be produced by lightning discharges since the 1990s, has been theoretically predicted to react with atmospheric nuclei via photonuclear reactions because they comprise high-energy photons of more than 10 MeV, but such photonuclear reactions by lightning discharges, which produce neutrons and unstable isotopes emitting positrons, were not observationally confirmed. The reactions and propagations of their products in the atmosphere are modeled with Monte Carlo simulations to quantitatively evaluate observations of TGFs, neutrons, and positrons at ground level. The successful comparison between observation and simulation is presented, and demonstrates that lightning discharges to trigger photonuclear reactions and to even produce isotopes in the atmosphere.
This book presents peer-reviewed articles from the International Conference on Optics and Electro-optics, ICOL-2019, held at Dehradun in India. It brings together leading researchers and professionals in the field of optics/optical engineering/optical materials and provides a platform to present and establish collaborations in this important area, with the theme "Trends in Electro-optics Instrumentation for Strategic Applications". Topics covered but not limited to are Optical Engineering, Optical Thin Films, Optical Materials, IR Sensors, Image Processing & Systems, Photonic Band Gap Materials, Adaptive Optics, Optical Image Processing & Holography, Lasers, Fiber Lasers & its Applications, Diffractive Optics, Innovative packaging of Optical Systems, Nanophotonics Devices and Applications, Optical Interferometry & Metrology, Terahertz, Millimeter Wave & Microwave Photonics, Fiber, Integrated & Nonlinear Optics and Optics and Electro-optics for Strategic Applications.
This book covers emerging energy storage technologies and material characterization methods along with various systems and applications in building, power generation systems and thermal management. The authors present options available for reducing the net energy consumption for heating/cooling, improving the thermal properties of the phase change materials and optimization methods for heat storage embedded multi-generation systems. An in-depth discussion on the natural convection-driven phase change is included. The book also discusses main energy storage options for thermal management practices in photovoltaics and phase change material applications that aim passive thermal control. This book will appeal to researchers and professionals in the fields of mechanical engineering, chemical engineering, electrical engineering, renewable energy, and thermodynamics. It can also be used as an ancillary text in upper-level undergraduate courses and graduate courses in these fields.
Modern Quantum Mechanics is a classic graduate level textbook, covering the main concepts from quantum mechanics in a clear, organized and engaging manner. The original author, J. J. Sakurai, was a renowned particle theorist. This third edition, revised by Jim Napolitano, introduces topics that extend its value into the twenty-first century, such as modern mathematical techniques for advanced quantum mechanical calculations, while at the same time retaining fundamental topics such as neutron interferometer experiments, Feynman path integrals, correlation measurements, and Bell's inequalities. A solutions manual is available.
This thesis describes the structures of six-dimensional (6d) superconformal field theories and its torus compactifications. The first half summarizes various aspects of 6d field theories, while the latter half investigates torus compactifications of these theories, and relates them to four-dimensional superconformal field theories in the class, called class S. It is known that compactifications of 6d conformal field theories with maximal supersymmetries provide numerous insights into four-dimensional superconformal field theories. This thesis generalizes the story to the theories with smaller supersymmetry, constructing those six-dimensional theories as brane configurations in the M-theory, and highlighting the importance of fractionalization of M5-branes. This result establishes new dualities between the theories with eight supercharges.
This book explores recent developments in theoretical research and data analysis of real-world complex systems, organized in three parts, namely Entropy, information, and complexity functions Multistability, oscillations, and rhythmic synchronization Diffusions, rotation, and convection in fluids The collection of works devoted to the memory of Professor Valentin Afraimovich provides a deep insight into the recent developments in complexity science by introducing new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to economics, genetics, engineering vibrations, as well as classic problems in physics, fluid and climate dynamics, and urban dynamics. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, and urban planners.
This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias and its more general extension to approximate semigroup evolution is explained. The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior. It is then shown that, in the framework of the theory of symplectic manifolds, there is a systematic algorithm for the construction of a canonical transformation of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for stability analysis in a wide range of applications.
This book offers a practical reference guide to soft rock mechanics for engineers and scientists. Written by recognized experts, it will benefit professionals, contractors, academics, researchers and students working on rock engineering projects in the fields of civil engineering, mining and construction engineering. Soft Rock Mechanics and Engineering covers a specific subject of great relevance in Rock Mechanics - and one that is directly connected to the design of geotechnical structures under difficult ground conditions. The book addresses practical issues related to the geomechanical properties of these types of rock masses and their characterization, while also discussing advances regarding in situ investigation, safety, and monitoring of geotechnical structures in soft rocks. Lastly, it presents important case histories involving tunnelling, dam foundations, coal and open pit mines and landslides.
This book deals with the practice of Optical Radiation Measurements
with introductory material to introduce the topics discussed. It
will be most useful for students, scientists and engineers working
in any academic, industrial or governmental projects related to
optical radiation. The book contains chapters that treat in detail
the procedures and techniques for the characterization of both
sources and detectors to the highest degree of accuracy and
reliability. It has a chapter devoted specifically to optical
measurements of laser sources and fiberoptics for communication and
a chapter devoted to uncertainty in measurement and its treatment
with real examples of optical measurements. The book contains
introductory materials that will allow a newcomer to radiometry to
develop the expertise to perform exacting and accurate measurement.
The authors stress the various causes of uncertainty in each phase
of a measurement and thus allow for users to arrive at a correct
assessment of their uncertainty of measurement in their particular
circumstance.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fifth volume collects authoritative chapters covering several applications of fractional calculus in physics, including electrodynamics, statistical physics and physical kinetics, and quantum theory.
This volume comprises select peer-reviewed papers from the Indo-French Workshop on Multifragmentation, Collective Flow, and Sub-Threshold Particle Production in Heavy-Ion Reactions held at the Department of Physics, Panjab University, Chandigarh, India in February, 2019. The contents highlight latest research trends in intermediate energy nuclear physics and emphasize on the various reaction mechanisms which take place in heavy-ion collisions. The chapters contribute to the understanding of interactions that govern the dynamics at sub-nucleonic level. The book includes contributions from global experts hailing from major research facilities of nuclear physics, and provides a good balance between experimental and theoretical model based studies. Given the range of topics covered, this book can be a useful reference for students and researchers interested in the field of heavy-ion reactions.
This book highlights the theory and practical applications of the chemical master equation (CME) approach for very large biochemical networks, which provides a powerful general framework for model building in a variety of biological networks. The aim of the book is to not only highlight advanced numerical solution methods for the CME, but also reveal their potential by means of practical examples. The case studies presented are mainly from biology; however, the applications from novel methods are discussed comprehensively, underlining the interdisciplinary approach in simulation and the potential of the chemical master equation approach for modelling bionetworks. The book is a valuable guide for researchers, graduate students, and professionals alike.
This book provides a comprehensive analysis of time-fixed terminal rendezvous around the Earth using chemical propulsion. The book has two main objectives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes and efficient software to solve impulsive maneuvers and fly rendezvous missions. The second objective of this book is to show how the relative motion theory is applied to the exact precision-integrated, long-duration, time-fixed terminal rendezvous problem around the oblate Earth for the general elliptic orbit case. The contents are both theoretical and applied, with long-lasting value for aerospace engineers, trajectory designers, professors of orbital mechanics, and students at the graduate level and above.
This book collects recent advances in the field of nonlinear dynamics in biological systems. Focusing on medical applications as well as more fundamental questions in biochemistry, it presents recent findings in areas such as control in chemically driven reaction-diffusion systems, electrical wave propagation through heart tissue, neural network growth, chiral symmetry breaking in polymers and mechanochemical pattern formation in the cytoplasm, particularly in the context of cardiac cells. It is a compilation of works, including contributions from international scientists who attended the "2nd BCAM Workshop on Nonlinear Dynamics in Biological Systems," held at the Basque Center for Applied Mathematics, Bilbao in September 2016. Embracing diverse disciplines and using multidisciplinary approaches - including theoretical concepts, simulations and experiments - these contributions highlight the nonlinear nature of biological systems in order to be able to reproduce their complex behavior. Edited by the conference organizers and featuring results that represent recent findings and not necessarily those presented at the conference, the book appeals to applied mathematicians, biophysicists and computational biologists.
Many events that affect global energy production and consumption have occurred since the second edition of Energy in the 21st Century appeared in 2011. For example, an earthquake and tsunami in Japan led to the disruption of the Fukushima nuclear facility and a global re-examination of the safety of the nuclear industry. Oil and natural gas prices continue to be volatile, and the demand for energy has been affected by the global economy. The third edition updates data and the discussion of recent events.Energy in the 21st Century has been used as the text for an introductory energy course for the general college student population. Based on student feedback, we have included several features that enhance the value of the third edition as a textbook. In particular, we have included learning objectives at the beginning of each chapter, end of chapter activities, a comprehensive index, and a glossary. Points to Ponder are abbreviated as P2P in the Learning Objectives boxes and are provided throughout the text. They are designed to encourage the reader to consider the material from different perspectives.
This volume explores how ionic liquids are used in different areas of biotechnology. It also provides insights on the interaction of ionic liquids with biomolecules and biomaterials. Ionic liquids have become essential players in the fields of synthesis, catalysis, extraction and electrochemistry, and their unique properties have opened a wide range of applications in biotechnology. Readers will discover diverse examples of the application of ionic liquids as solvents for biomaterials extraction and pretreatment, in enzymatic and whole cell catalysed reaction, and as activation agents for biocatalysis. Particular attention is given to the biologically functionalized ionic liquids employed in medical and pharmaceutical applications. Although ionic liquids are considered "green solvents", the contributing authors will also explore their environmental impact when applied to biotechnology. Chemical, biological and medical scientists interested in ionic liquids and biotechnology will find this work instructive and informative.
|
![]() ![]() You may like...
Excitons and Cooper Pairs - Two…
Monique Combescot, Shiue-Yuan Shiau
Hardcover
R3,139
Discovery Miles 31 390
Problems of Condensed Matter Physics…
Alexei L. Ivanov, Sergei G. Tikhodeev
Hardcover
R4,768
Discovery Miles 47 680
Statistical Physics, Optimization…
Florent Krzakala, Federico Ricci Tersenghi, …
Hardcover
R2,437
Discovery Miles 24 370
Protein and Peptide-based Microarrays…
Navid Rabiee, Michael R. Hamblin
Paperback
R760
Discovery Miles 7 600
The Oxford Handbook of Sound Studies
Trevor Pinch, Karin Bijsterveld
Hardcover
R5,521
Discovery Miles 55 210
|