![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics
This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. Two huge laser facilities are presently under construction to show that this method works. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modeling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.
Gain insight into the mechanical properties and performance of engineering ceramics and composites. This collection of articles illustrates the Mechanical Behavior and Performance of Ceramics & Composites symposium, which included over 100 presentations representing 10 countries. The symposium addressed the cutting-edge topics on mechanical properties and reliability of ceramics and composites and their correlations to processing, microstructure, and environmental effects.
The emphasis of Planetary Atmospheres is on comparative aspects of
planetary atmospheres, generally meaning comparison with the Earth,
including atmospheric composition, thermal structure, cloud
properties, dynamics, weather and climate, and aeronomy. The goal
is to look for common processes at work under different boundary
conditions in order to reach a fundamental understanding of the
physics of atmospheres. As part of a general Physics course, the
material is chosen to emphasise certain aspects that will be of
broad topical interest:
This textbook describes the physics of semiconductor nanostructures
with emphasis on their electronic transport properties. At its
heart are five fundamental transport phenomena: quantized
conductance, tunnelling transport, the Aharonov-Bohm effect, the
quantum Hall effect, and the Coulomb blockade effect.
Quantum mechanical problems capable of exact solution are traditionally solved in a few instances only (such as the harmonic oscillator and angular momentum) by operator methods, but mainly by means of Schrodinger's wave mechanics. The present volume shows that a large range of one- and three- dimensional problems, including certain relativistic ones, are solvable by algebraic, representation-independent methods using commutation relations, shift operators, the viral, hyperviral, and Hellman-Feynman theorems. Applications of these operator methods to the calculation of eigenvalues, matrix elements, and wavefunctions are discussed in detail. This volume provides an outstanding introduction to the use of operator methods in quantum mechanics, and also serves as a reference work on this topic. As such it is an excellent complement to senior and graduate courses in quantum mechanics. Although primarily a book on applications of operator methods, the presentation is made self-contained by the inclusion of an introductory chapter on the formalism of quantum mechanics. Additional background material supplements the volume at various points in the text. Although there has been much research on operator methods to solve quantum mechanical problems, until now many of these results have remained scattered throughout the literature. Nonspecialists, as well as graduate and upper division students in physics will find this accessible volume to be essential reading in theoretical physics.
This book is a long-term history of optics, from early Greek theories of vision to the nineteenth-century victory of the wave theory of light. It shows how light gradually became the central entity of a domain of physics that no longer referred to the functioning of the eye; it retraces the subsequent competition between medium-based and corpuscular concepts of light; and it details the nineteenth-century flourishing of mechanical ether theories. The author critically exploits and sometimes completes the more specialized histories that have flourished in the past few years. The resulting synthesis brings out the actors' long-term memory, their dependence on broad cultural shifts, and the evolution of disciplinary divisions and connections. Conceptual precision, textual concision, and abundant illustration make the book accessible to a broad variety of readers interested in the origins of modern optics.
Polymeric materials have been and continue to be a focus of
research in the development of materials for energy conversion,
storage and delivery applications (fuel cells, batteries,
photovoltaics, capacitors, etc.). Significant growth in this field
started in the early 1990s and has continued to grow quite
substantially since that time. Polymeric materials now have a
prominent place in energy research.
Get the answers you need at your fingertips faster than any other source. Success in Physics is critical when entering the growing fields of technology, computer science and engineering that will support our future progress and innovation with breakthroughs and advances. To help retain the facts, equations and concepts essential to success in class and beyond, these 6 laminated pages can be referenced quickly and easily while studying, as a refresher before exams or even as a desktop reference beyond school. Expertly written by author, editor and professor Brett Kaabel PhD, and designed for quick use and high retention. Be sure to get our original Physics guide and Physics 2 for more complete coverage and better grades for an unmatched value. 6 page laminated guide includes: Introduction, Constants & Definitions Classical Mechanics Kinematics, Newton's Laws Work & Kinetic Energy, Potential Energy (U) Conservation of Energy, Momentum Simple Harmonic Motion (SHM) Gravitation Thermodynamics Temperature Scales Zeroth Law, First Law & Second Law of Thermodynamics Thermal Properties of Systems Kinetic Theory of Gasses Waves Types of Waves Transverse vs. Longitudinal Waves Wave Equation Electromagnetism Electric Charge, Electric Field Magnetic Field, Magnetic Fluz Gauss's Law for Magnetism Faraday's Law of Induction Electromagnetic Waves, Electric Circuits Special Relativity Einstein's Postulates, Time Dilation Length Contraction Lorentz Transformation, Velocity Transformation Relativistic Doppler Effect Relativistic Energy & Momentum Quantum Mechanics Quantized Atomic Energy Levels Nuclear Physics Atoms, Nuclei, Nuclear Forces Radioactivity, Nuclear Reactions Force Carriers
Updated and expanded! Reviews the theory, materials, and processes that are used in the lithographic process. Opens with a brief historical introduction to the advances in microlithography. Discusses four major topics: the physics of the lithographic process, organic resist materials, resist processing, and plasma etching. Designed as a tutorial for researchers with no experience in the field, as well as those experienced in microlithography. Will also prove invaluable to those already involved in microlithography. Includes numerous references for more detailed reading on specific aspects of microlithography.
Flight dynamics create important research problems in the process of helicopter design. They involve advanced design ideas and engineering technology theories. This book concerns flight theory and research methods for helicopter flight science and technology. The contents include the fundamentals of rotor aerodynamics, helicopter trim, helicopter stability and control, and helicopter performance analyses. The book also lokks at the kinematics, dynamics, control, and aerodynamics of the helicopter during maneuvering flight. With an emphasis on the physical concepts, the characteristics of rotor flapping, theoretical analyses and numerical simulation methods for helicopter flight mechanics are detail described in detail. The book is primarily intended for senior undergraduates and postgraduates who major in aerospace engineering. It is also a good reference book for helicopter engineers interested design and operational engineering. It lays a foundation for the study of helicopter aeromechanics.
This hands-on guide is primarily intended to be used in
undergraduate laboratories in the physical sciences and
engineering. It assumes no prior knowledge of statistics. It
introduces the necessary concepts where needed, with key points
illustrated with worked examples and graphic illustrations. In
contrast to traditional mathematical treatments it uses a
combination of spreadsheet and calculus-based approaches, suitable
as a quick and easy on-the-spot reference. The emphasis throughout
is on practical strategies to be adopted in the laboratory.
Climate Physics is a modern subject based on a space-era understanding of the physical properties of the atmosphere and ocean, their planetary-scale history and evolution, new global measurement systems and sophisticated computer models, which collectively make quantitative studies and predictions possible. At the same time, interest in understanding the climate has received an enormous boost from the concern generated by the realization that rapid climate change, much of it forced by the relentless increase in population and industrialization, is potentially a serious threat to the quality of life on Earth. Our ability to resist and overcome any such threat depends directly on our ability to understand what physical effects are involved and to predict how trends may develop. In an introductory course like that presented here, we want to clarify the basics, topic by topic, and see how far we can get by applying relatively simple Physics to the climate problem. This provides a foundation for more advanced work, which we can identify and appreciate at this level although of course a full treatment requires more advanced books, of which there are many.
Newtonian mechanics is taught as part of every physics program for several reasons: it is a towering intellectual achievement; it has diverse applications; and it provides a context for teaching modelling and problem solving. This text gives equal prominence to all three missions. It therefore includes some advanced material as well as the customary introductory topics and is designed to be studied over an extended time-frame. The problem-solving aspects are developed more fully than in many other texts; showing readers how problems are approached and bringing out the ways of going about constructing a model and solution. Features: Includes some advanced material as well as the customary introductory topics The problem-solving aspects are developed more fully than in many other texts; showing readers how problems are approached and bringing out the methods of going about constructing a model and solution
The neutron is an elementary particle that has been extensively studied, both theoretically and experimentally. This book reviews and analyses the results of the mainly experimental research on the neutron and rationalizes what is known so far about its intrinsic properties. The book covers topics that have not previously been dealt with in detail, including the gravitational properties of the neutron, precise determination of its mass, beta-decay, and its electromagnetic properties. This translation is an updated version of the original Russian text and also covers the more recent advances made during the past 7-8 years, including the application of methods based on the storage of ultra-cold neutrons to the study of beta-decay, new precise measurement of the mass of the neutron, and confirmation of modern theories of the internal structure of the neutron.
This book summarizes the enormous amount of material accumulated in the field of nuclear density functional theory over the last few decades. The goal of the theory is to provide a complete quantum-mechanical description and explanation of nuclear phenomena in terms of the local density distribution as a basic ingredient rather than the many-particle wavefunction. This leads to a considerable reduction in the mathematical complexity of nuclear many-body problems and to a great conceptual simplicity and visual clarity in its theoretical treatment. The authors develop the mathematical framework on which the theory is based and consider the associated approaches used to analyse experimental data in a variety of nuclei and nuclear processes with widely differing properties.
Nanoscience and nanotechnology have functioned as effective "buzzwords " for at least a decade due to the unique properties that materials possess on the nanometer scale. The interest in nanoscience and nanotechnology is so great and so widespread that these topics are even being introduced at the K-12 level in some school districts. Nanoscience and nanotechnology have already improved many applications and have the potential to continue to do so, making it important for all types of scientists to stay up-to-date on research related to nanomaterials. In the first section of this book, a variety of synthetic methods used to make or functionalize nanomaterials are presented with work related to mesoporous materials, semiconductor nanowires, graphene, and carbon nanotubes included. The second section of the book presents accounts of using nanotechnology and nanoscience in a variety of ways. Overall, this book presents a snapshot of research covering synthetic studies of nanomaterials to applications of nanomaterials.
From a star astrophysicist, a journey into the world of particle physics and the cosmos -- and a call for more just, inclusive practice of science. Science, like most fields, is set up for men to succeed, and is rife with racism, sexism, and shortsightedness as a result. But as Dr. Chanda Prescod-Weinstein makes brilliantly clear, we all have a right to know the night sky. One of the leading physicists of her generation, she is also one of the fewer than one hundred Black women to earn a PhD in physics. You will enjoy -- and share -- her love for physics, from the Standard Model of Particle Physics and what lies beyond it, to the physics of melanin in skin, to the latest theories of dark matter -- all with a new spin and rhythm informed by pop culture, hip hop, politics, and Star Trek. This vision of the cosmos is vibrant, inclusive and buoyantly non-traditional. By welcoming the insights of those who have been left out for too long, we expand our understanding of the universe and our place in it. The Disordered Cosmos is a vision for a world without prejudice that allows everyone to view the wonders of the universe through the same starry eyes.
Energy, water, affordable healthcare and global warming are four major concerns resulting from resource depletion, record high oil prices, clean water shortages, high costs of pharmaceuticals, and changing climate conditions. Among many potential solutions, advance in membrane technology is one of the most direct, effective and feasible approaches to solve these sophisticated issues. This membrane book presents cutting-edge membrane research and development for water reuse and desalination, energy development including biofuels, CO2 capture, pharmaceutical purification and separation, and biomedical applications.
The AQA A level Lab Books support students in completing the A level Practical requirements. This lab book includes: All the instructions students need to perform the required practicals, consistent with AQA's requirements and CPAC skills Writing frames for students to record their results and reflect on their work Questions that allow students to consolidate learning and develop reflective skills in their practical work Apparatus and Techniques (AT) skills self-assessment, so that students can track their progress covering AT practical requirements a full set of answers at the back. This lab book is designed to help students to: Structure their A level lab work to ensure that they cover the required Practical assessment criteria Track their progress in the development of A level practical skills Create a record of all of the practical work they will have completed, in preparation for revision. |
You may like...
Second Language Processing - An Analysis…
James F. Lee, Alessandro G. Benati
Hardcover
R6,242
Discovery Miles 62 420
Advances and Trends in Geodesy…
Sona Molcikova, Viera Hurcikova, …
Hardcover
R3,509
Discovery Miles 35 090
Unmanned Vehicle Systems in Geomatics…
Costas Armenakis, Petros Patias
Hardcover
R2,293
Discovery Miles 22 930
|